Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Codecfake Dataset and Countermeasures for the Universally Detection of Deepfake Audio (2405.04880v2)

Published 8 May 2024 in cs.SD, cs.AI, and eess.AS

Abstract: With the proliferation of Audio LLM (ALM) based deepfake audio, there is an urgent need for generalized detection methods. ALM-based deepfake audio currently exhibits widespread, high deception, and type versatility, posing a significant challenge to current audio deepfake detection (ADD) models trained solely on vocoded data. To effectively detect ALM-based deepfake audio, we focus on the mechanism of the ALM-based audio generation method, the conversion from neural codec to waveform. We initially construct the Codecfake dataset, an open-source large-scale dataset, including 2 languages, over 1M audio samples, and various test conditions, focus on ALM-based audio detection. As countermeasure, to achieve universal detection of deepfake audio and tackle domain ascent bias issue of original SAM, we propose the CSAM strategy to learn a domain balanced and generalized minima. In our experiments, we first demonstrate that ADD model training with the Codecfake dataset can effectively detects ALM-based audio. Furthermore, our proposed generalization countermeasure yields the lowest average Equal Error Rate (EER) of 0.616% across all test conditions compared to baseline models. The dataset and associated code are available online.

Citations (8)

Summary

We haven't generated a summary for this paper yet.