Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

On the Euler characteristic of the commutative graph complex and the top weight cohomology of $\mathcal M_g$ (2405.04190v2)

Published 7 May 2024 in math.AT, math-ph, math.AG, math.CO, and math.MP

Abstract: We prove an asymptotic formula for the Euler characteristic of Kontsevich's commutative graph complex. This formula implies that the total amount of commutative graph homology grows super-exponentially with the rank and, via a theorem of Chan, Galatius, and Payne, that the dimension of the top weight cohomology of the moduli space of curves, $\mathcal M_g$, grows super-exponentially with the genus $g$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com