Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the quantization goodness of polar lattices (2405.04051v3)

Published 7 May 2024 in cs.IT and math.IT

Abstract: In this work, we prove that polar lattices, when tailored for lossy compression, are quantization-good in the sense that their normalized second moments approach $\frac{1}{2\pi e}$ as the dimension of lattices increases. It has been predicted by Zamir et al. \cite{ZamirQZ96} that the Entropy Coded Dithered Quantization (ECDQ) system using quantization-good lattices can achieve the rate-distortion bound of i.i.d. Gaussian sources. In our previous work \cite{LingQZ}, we established that polar lattices are indeed capable of attaining the same objective. It is reasonable to conjecture that polar lattices also demonstrate quantization goodness in the context of lossy compression. This study confirms this hypothesis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. R. Zamir and M. Feder, “Information rates of pre/post-filtered dithered quantizers,” IEEE Trans. Inf. Theory, vol. 42, no. 5, pp. 1340–1353, 1996.
  2. L. Liu, J. Shi, and C. Ling, “Polar lattices for lossy compression,” IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 6140–6163, Spet. 2021.
  3. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.
  4. Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun., vol. 28, no. 1, pp. 84–95, 1980.
  5. R. Gray, “Vector quantization,” IEEE ASSP Mag., vol. 1, no. 2, pp. 4–29, April 1984.
  6. C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” IRE Nat. Conv. Rec., Pt. 4, pp. 142–163, 1959.
  7. J. Conway and N. Sloane, “Voronoi regions of lattices, second moments of polytopes, and quantization,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 211–226, 1982.
  8. J. Ziv, “On universal quantization,” IEEE Trans. Inf. Theory, vol. 31, no. 3, pp. 344–347, 1985.
  9. E. Agrell and B. Allen, “On the best lattice quantizers,” IEEE Trans. Inf. Theory, vol. 69, no. 12, pp. 7650–7658, 2023.
  10. S. Lyu, Z. Wang, C. Ling, and H. Chen, “Better lattice quantizers constructed from complex integers,” IEEE Trans. Commun., vol. 70, no. 12, pp. 7932–7940, 2022.
  11. D. Pook-Kolb, E. Agrell, and B. Allen, “The voronoi region of the barnes–wall lattice Λ16subscriptΛ16\Lambda_{16}roman_Λ start_POSTSUBSCRIPT 16 end_POSTSUBSCRIPT,” IEEE J. Select. Areas Inf. Theory, vol. 4, pp. 16–23, 2023.
  12. U. Erez and R. Zamir, “Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2293–2314, Oct. 2004.
  13. U. Erez, S. Litsyn, and R. Zamir, “Lattices which are good for (almost) everything,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3401–3416, Oct. 2005.
  14. S. Vatedka and N. Kashyap, “Some “goodness” properties of LDA lattices,” Problems Inf. Transmission, vol. 53, no. 1, pp. 1–29, 2017. [Online]. Available: https://doi.org/10.1134/S003294601701001X
  15. Y. Yan, C. Ling, and X. Wu, “Polar lattices: Where Arıkan meets Forney,” in Proc. 2013 IEEE Int. Symp. Inform. Theory, Istanbul, Turkey, July 2013, pp. 1292–1296.
  16. E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.
  17. C. Ling and J.-C. Belfiore, “Achieving AWGN channel capacity with lattice Gaussian coding,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5918–5929, Oct. 2014.
  18. C. Ling and L. Gan, “Lattice quantization noise revisited,” in Proc. 2013 IEEE Inform. Theory Workshop, Seville, Spain, 2013, pp. 1–5.
  19. E. Arıkan, “Source polarization,” in Proc. 2010 IEEE Int. Symp. Inform. Theory, Austin, USA, June 2010, pp. 899–903.
  20. H. S. Cronie and S. B. Korada, “Lossless source coding with polar codes,” in Proc. 2010 IEEE Int. Symp. Inform. Theory, Austin, TX, June 2010, pp. 904–908.
  21. S. Korada and R. Urbanke, “Polar codes are optimal for lossy source coding,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1751–1768, April 2010.
  22. E. Arıkan and I. Telatar, “On the rate of channel polarization,” in Proc. 2009 IEEE Int. Symp. Inform. Theory, Seoul, South Korea, June 2009, pp. 1493–1495.
  23. I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.
  24. R. Pedarsani, S. Hassani, I. Tal, and I. Telatar, “On the construction of polar codes,” in Proc. 2011 IEEE Int. Symp. Inform. Theory, St. Petersburg, Russia, July 2011, pp. 11–15.
  25. G. Forney, M. Trott, and S.-Y. Chung, “Sphere-bound-achieving coset codes and multilevel coset codes,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 820–850, May 2000.
  26. L. Liu, Y. Yan, C. Ling, and X. Wu, “Construction of capacity-achieving lattice codes: Polar lattices,” IEEE Trans. Commun., vol. 67, no. 2, pp. 915–928, Feb. 2019.
  27. L. Liu, S. Lyu, C. Ling, and B. Bai, “On the equivalence between probabilistic shaping and geometric shaping: a polar lattice perspective,” in Proc. 2024 IEEE Int. Symp. Inform. Theory, to appear 2024.
  28. C. Ling, L. Luzzi, J.-C. Belfiore, and D. Stehle, “Semantically secure lattice codes for the Gaussian wiretap channel,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 6399–6416, Oct. 2014.
  29. S. H. Hassani, K. Alishahi, and R. L. Urbanke, “Finite-length scaling for polar codes,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5875–5898, 2014.
  30. D. Goldin and D. Burshtein, “Improved bounds on the finite length scaling of polar codes,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6966–6978, 2014.
  31. W. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 446–472, July 1948.
  32. R. Gray, “Quantization noise spectra,” IEEE Trans. Inf. Theory, vol. 36, no. 6, pp. 1220–1244, 1990.
  33. H. Ghourchian, A. Gohari, and A. Amini, “Existence and continuity of differential entropy for a class of distributions,” IEEE Commun. Letters, vol. 21, no. 7, pp. 1469–1472, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.