Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Self-Interacting Dark Matter Halos with Diverse Baryonic Distributions: A Parametric Approach (2405.03787v2)

Published 6 May 2024 in astro-ph.CO

Abstract: Galaxies residing in dark matter halos exert significant gravitational effects that alter halo structure and dynamics. The complexity of these interactions escalates with the diversity of galactic structures and the variability in dark matter halo profiles under self-interacting dark matter (SIDM) models. This work extends the parametric model for dark matter-only halos presented in arXiv:2305.16176 to incorporate baryons. We adapt this model to consistently represent the SIDM halo density profile over time, highlighting the role of a gravothermal phase in characterizing the state of an SIDM halo. Given this phase, the density profile in SIDM is determined by a fictitious progenitor -- consisting of an NFW halo influenced by a baryonic potential -- that has evolved to its present state. In the temporal dimension, the model incorporates a form factor that rescales the evolution time in the dark matter-only case, thereby enabling the introduction of a universal phase. In the radial dimension, the halo density profile is parametrized to reflect the influences of baryons. We calibrate the model through N-body simulations with baryon potentials to fit various stellar-to-halo mass ratios and size-mass relationships. Our parametric approach is numerically efficient, enabling the exploration of SIDM effects across a diverse set of halos, as exemplified by a case study using an illustrative sample that spans five orders of magnitude in the mass range. We also demonstrate that the effects of evolution history and the specific SIDM model can be separated from the current states of galaxies and halos, leaving the task of identifying consistent SIDM models to dedicated post-processing analyses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (94)
  1. Daneng Yang, Ethan O. Nadler, Hai-Bo Yu,  and Yi-Ming Zhong, “A parametric model for self-interacting dark matter halos,” JCAP 02, 032 (2024a), arXiv:2305.16176 [astro-ph.CO] .
  2. Ricardo A. Flores and Joel R. Primack, “Observational and Theoretical Constraints on Singular Dark Matter Halos,” ApJ Letters 427, L1 (1994), arXiv:astro-ph/9402004 [astro-ph] .
  3. David N. Spergel and Paul J. Steinhardt, “Observational Evidence for Self-Interacting Cold Dark Matter,” Phys. Rev. Lett.  84, 3760–3763 (2000), arXiv:astro-ph/9909386 [astro-ph] .
  4. W. J. G. de Blok, Stacy S. McGaugh, Albert Bosma,  and Vera C. Rubin, “Mass density profiles of LSB galaxies,” Astrophys. J. Lett. 552, L23–L26 (2001), arXiv:astro-ph/0103102 .
  5. Rachel Kuzio de Naray, Gregory D. Martinez, James S. Bullock,  and Manoj Kaplinghat, “The Case Against Warm or Self-Interacting Dark Matter as Explanations for Cores in Low Surface Brightness Galaxies,” ApJ Letters 710, L161–L166 (2010), arXiv:0912.3518 [astro-ph.CO] .
  6. Se-Heon Oh, W. J. G. de Blok, Elias Brinks, Fabian Walter,  and Jr. Kennicutt, Robert C., “Dark and Luminous Matter in THINGS Dwarf Galaxies,” Astrophys. J. 141, 193 (2011), arXiv:1011.0899 [astro-ph.CO] .
  7. Kyle A. Oman, Julio F. Navarro, Azadeh Fattahi, Carlos S. Frenk, Till Sawala, Simon D. M. White, Richard Bower, Robert A. Crain, Michelle Furlong, Matthieu Schaller, Joop Schaye,  and Tom Theuns, “The unexpected diversity of dwarf galaxy rotation curves,” MNRAS 452, 3650–3665 (2015), arXiv:1504.01437 [astro-ph.GA] .
  8. Julio F. Navarro, Vincent R. Eke,  and Carlos S. Frenk, “The cores of dwarf galaxy halos,” Mon. Not. Roy. Astron. Soc. 283, L72–L78 (1996), arXiv:astro-ph/9610187 .
  9. Oleg Y. Gnedin and HongSheng Zhao, “Maximum feedback and dark matter profiles of dwarf galaxies,” Mon. Not. Roy. Astron. Soc. 333, 299 (2002), arXiv:astro-ph/0108108 .
  10. Justin I. Read and G. Gilmore, “Mass loss from dwarf spheroidal galaxies: The Origins of shallow dark matter cores and exponential surface brightness profiles,” Mon. Not. Roy. Astron. Soc. 356, 107–124 (2005), arXiv:astro-ph/0409565 .
  11. F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, J. Wadsley, P. Jonsson, B. Willman, G. Stinson, T. Quinn,  and P. Madau, “Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows,” Nature (London) 463, 203–206 (2010), arXiv:0911.2237 [astro-ph.CO] .
  12. Arianna Di Cintio, Chris B. Brook, Aaron A. Dutton, Andrea V. Macciò, Greg S. Stinson,  and Alexander Knebe, “A mass-dependent density profile for dark matter haloes including the influence of galaxy formation,” Mon. Not. Roy. Astron. Soc. 441, 2986–2995 (2014), arXiv:1404.5959 [astro-ph.CO] .
  13. T. K. Chan, D. Kereš, J. Oñorbe, P. F. Hopkins, A. L. Muratov, C. A. Faucher-Giguère,  and E. Quataert, “The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations,” Mon. Not. Roy. Astron. Soc. 454, 2981–3001 (2015), arXiv:1507.02282 [astro-ph.GA] .
  14. Edouard Tollet, Andrea V. Macciò, Aaron A. Dutton, Greg S. Stinson, Liang Wang, Camilla Penzo, Thales A. Gutcke, Tobias Buck, Xi Kang, Chris Brook, Arianna Di Cintio, Ben W. Keller,  and James Wadsley, “NIHAO - IV: core creation and destruction in dark matter density profiles across cosmic time,” MNRAS 456, 3542–3552 (2016), arXiv:1507.03590 [astro-ph.GA] .
  15. Alexandres Lazar, James S. Bullock, Michael Boylan-Kolchin, T. K. Chan, Philip F. Hopkins, Andrew S. Graus, Andrew Wetzel, Kareem El-Badry, Coral Wheeler, Maria C. Straight, Dušan Kereš, Claude-André Faucher-Giguère, Alex Fitts,  and Shea Garrison-Kimmel, “A dark matter profile to model diverse feedback-induced core sizes of ΛΛ\Lambdaroman_ΛCDM haloes,” MNRAS 497, 2393–2417 (2020), arXiv:2004.10817 [astro-ph.GA] .
  16. Andrea V. Macciò, Samuele Crespi, Marvin Blank,  and Xi Kang, “NIHAO – XXIII. Dark matter density shaped by black hole feedback,” Mon. Not. Roy. Astron. Soc. 495, L46–L50 (2020), arXiv:2004.03817 [astro-ph.GA] .
  17. Isabel M. E. Santos-Santos, Julio F. Navarro, Andrew Robertson, Alejandro Benítez-Llambay, Kyle A. Oman, Mark R. Lovell, Carlos S. Frenk, Aaron D. Ludlow, Azadeh Fattahi,  and Adam Ritz, “Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves,” MNRAS 495, 58–77 (2020a), arXiv:1911.09116 [astro-ph.GA] .
  18. Sean Tulin and Hai-Bo Yu, “Dark matter self-interactions and small scale structure,” Physics Reports 730, 1–57 (2018), arXiv:1705.02358 [hep-ph] .
  19. Susmita Adhikari, Arka Banerjee, Kimberly K. Boddy, Francis-Yan Cyr-Racine, Harry Desmond, Cora Dvorkin, Bhuvnesh Jain, Felix Kahlhoefer, Manoj Kaplinghat, Anna Nierenberg, Annika H. G. Peter, Andrew Robertson, Jeremy Sakstein,  and Jesús Zavala, “Astrophysical Tests of Dark Matter Self-Interactions,” arXiv e-prints , arXiv:2207.10638 (2022), arXiv:2207.10638 [astro-ph.CO] .
  20. David N. Spergel and Paul J. Steinhardt, “Observational evidence for selfinteracting cold dark matter,” Phys. Rev. Lett. 84, 3760–3763 (2000), arXiv:astro-ph/9909386 .
  21. C. S. Kochanek and Martin J. White, “A Quantitative study of interacting dark matter in halos,” Astrophys. J. 543, 514 (2000), arXiv:astro-ph/0003483 .
  22. Ayuki Kamada, Manoj Kaplinghat, Andrew B. Pace,  and Hai-Bo Yu, “How the Self-Interacting Dark Matter Model Explains the Diverse Galactic Rotation Curves,” Phys. Rev. Lett. 119, 111102 (2017), arXiv:1611.02716 [astro-ph.GA] .
  23. Tao Ren, Anna Kwa, Manoj Kaplinghat,  and Hai-Bo Yu, “Reconciling the Diversity and Uniformity of Galactic Rotation Curves with Self-Interacting Dark Matter,” Physical Review X 9, 031020 (2019), arXiv:1808.05695 [astro-ph.GA] .
  24. Isabel M. E. Santos-Santos, Julio F. Navarro, Andrew Robertson, Alejandro Benítez-Llambay, Kyle A. Oman, Mark R. Lovell, Carlos S. Frenk, Aaron D. Ludlow, Azadeh Fattahi,  and Adam Ritz, “Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves,” MNRAS 495, 58–77 (2020b), arXiv:1911.09116 [astro-ph.GA] .
  25. Camila A. Correa, Matthieu Schaller, Sylvia Ploeckinger, Noemi Anau Montel, Christoph Weniger,  and Shinichiro Ando, “TangoSIDM: Tantalizing models of Self-Interacting Dark Matter,” Mon. Not. Roy. Astron. Soc. 517, 3045–3063 (2022), arXiv:2206.11298 [astro-ph.GA] .
  26. Daneng Yang, Ethan O. Nadler,  and Hai-Bo Yu, “Strong Dark Matter Self-interactions Diversify Halo Populations within and surrounding the Milky Way,” Astrophys. J. 949, 67 (2023a), arXiv:2211.13768 [astro-ph.GA] .
  27. Shmuel Balberg, Stuart L. Shapiro,  and Shogo Inagaki, “Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe,” Astrophys. J.  568, 475–487 (2002), arXiv:astro-ph/0110561 [astro-ph] .
  28. Shmuel Balberg, Stuart L. Shapiro,  and Shogo Inagaki, “Selfinteracting dark matter halos and the gravothermal catastrophe,” Astrophys. J. 568, 475–487 (2002), arXiv:astro-ph/0110561 .
  29. Jun Koda and Paul R. Shapiro, “Gravothermal collapse of isolated self-interacting dark matter haloes: N-body simulation versus the fluid model,” MNRAS 415, 1125–1137 (2011), arXiv:1101.3097 [astro-ph.CO] .
  30. Hiroya Nishikawa, Kimberly K. Boddy,  and Manoj Kaplinghat, “Accelerated core collapse in tidally stripped self-interacting dark matter halos,” Phys. Rev. D 101, 063009 (2020), arXiv:1901.00499 [astro-ph.GA] .
  31. Omid Sameie, Hai-Bo Yu, Laura V. Sales, Mark Vogelsberger,  and Jesús Zavala, “Self-Interacting Dark Matter Subhalos in the Milky Way’s Tides,” Phys. Rev. Lett. 124, 141102 (2020), arXiv:1904.07872 [astro-ph.GA] .
  32. Jesús Zavala, Mark R. Lovell, Mark Vogelsberger,  and Jan D. Burger, “Diverse dark matter density at sub-kiloparsec scales in Milky Way satellites: Implications for the nature of dark matter,” Phys. Rev. D 100, 063007 (2019), arXiv:1904.09998 [astro-ph.GA] .
  33. Manoj Kaplinghat, Mauro Valli,  and Hai-Bo Yu, “Too Big To Fail in Light of Gaia,” Mon. Not. Roy. Astron. Soc. 490, 231–242 (2019), arXiv:1904.04939 [astro-ph.GA] .
  34. Felix Kahlhoefer, Manoj Kaplinghat, Tracy R. Slatyer,  and Chih-Liang Wu, “Diversity in density profiles of self-interacting dark matter satellite halos,” JCAP 12, 010 (2019), arXiv:1904.10539 [astro-ph.GA] .
  35. Camila A. Correa, “Constraining velocity-dependent self-interacting dark matter with the Milky Way’s dwarf spheroidal galaxies,” Mon. Not. Roy. Astron. Soc. 503, 920–937 (2021), arXiv:2007.02958 [astro-ph.GA] .
  36. Hannah C. Turner, Mark R. Lovell, Jesús Zavala,  and Mark Vogelsberger, “The onset of gravothermal core collapse in velocity-dependent self-interacting dark matter subhaloes,” Mon. Not. Roy. Astron. Soc. 505, 5327–5339 (2021), arXiv:2010.02924 [astro-ph.GA] .
  37. Oren Slone, Fangzhou Jiang, Mariangela Lisanti,  and Manoj Kaplinghat, “Orbital evolution of satellite galaxies in self-interacting dark matter models,” Phys. Rev. D 107, 043014 (2023), arXiv:2108.03243 [astro-ph.CO] .
  38. Maya Silverman, James S. Bullock, Manoj Kaplinghat, Victor H. Robles,  and Mauro Valli, “Motivations for a large self-interacting dark matter cross-section from Milky Way satellites,” Mon. Not. Roy. Astron. Soc. 518, 2418–2435 (2022), arXiv:2203.10104 [astro-ph.GA] .
  39. Quinn E. Minor, Sophia Gad-Nasr, Manoj Kaplinghat,  and Simona Vegetti, “An unexpected high concentration for the dark substructure in the gravitational lens SDSSJ0946+1006,” Mon. Not. Roy. Astron. Soc. 507, 1662–1683 (2021), arXiv:2011.10627 [astro-ph.GA] .
  40. Daneng Yang and Hai-Bo Yu, “Self-interacting dark matter and small-scale gravitational lenses in galaxy clusters,” Phys. Rev. D 104, 103031 (2021), arXiv:2102.02375 [astro-ph.GA] .
  41. Daniel Gilman, Jo Bovy, Tommaso Treu, Anna Nierenberg, Simon Birrer, Andrew Benson,  and Omid Sameie, “Strong lensing signatures of self-interacting dark matter in low-mass haloes,” Mon. Not. Roy. Astron. Soc. 507, 2432–2447 (2021), arXiv:2105.05259 [astro-ph.CO] .
  42. Daniel Gilman, Yi-Ming Zhong,  and Jo Bovy, “Constraining resonant dark matter self-interactions with strong gravitational lenses,” Phys. Rev. D 107, 103008 (2023), arXiv:2207.13111 [astro-ph.CO] .
  43. Ethan O. Nadler, Daneng Yang,  and Hai-Bo Yu, “A Self-interacting Dark Matter Solution to the Extreme Diversity of Low-mass Halo Properties,” Astrophys. J. Lett. 958, L39 (2023), arXiv:2306.01830 [astro-ph.GA] .
  44. Jason Pollack, David N. Spergel,  and Paul J. Steinhardt, “Supermassive Black Holes from Ultra-Strongly Self-Interacting Dark Matter,” Astrophys. J. 804, 131 (2015), arXiv:1501.00017 [astro-ph.CO] .
  45. Jeremie Choquette, James M. Cline,  and Jonathan M. Cornell, “Early formation of supermassive black holes via dark matter self-interactions,” JCAP 07, 036 (2019), arXiv:1812.05088 [astro-ph.CO] .
  46. Wei-Xiang Feng, Hai-Bo Yu,  and Yi-Ming Zhong, “Seeding Supermassive Black Holes with Self-interacting Dark Matter: A Unified Scenario with Baryons,” Astrophys. J. Lett. 914, L26 (2021), arXiv:2010.15132 [astro-ph.CO] .
  47. Wei-Xiang Feng, Hai-Bo Yu,  and Yi-Ming Zhong, “Dynamical instability of collapsed dark matter halos,” JCAP 2022, 036 (2022), arXiv:2108.11967 [astro-ph.CO] .
  48. Tamar Meshveliani, Jesús Zavala,  and Mark R. Lovell, “Gravothermal collapse of self-interacting dark matter halos as the origin of intermediate mass black holes in Milky Way satellites,” Phys. Rev. D 107, 083010 (2023), arXiv:2210.01817 [astro-ph.GA] .
  49. Moritz S. Fischer, Lenard Kasselmann, Marcus Brüggen, Klaus Dolag, Felix Kahlhoefer, Antonio Ragagnin, Andrew Robertson,  and Kai Schmidt-Hoberg, “Cosmological and idealized simulations of dark matter haloes with velocity-dependent, rare and frequent self-interactions,” Mon. Not. Roy. Astron. Soc. 529, 2327–2348 (2024), arXiv:2310.07750 [astro-ph.CO] .
  50. Birendra Dhanasingham, Francis-Yan Cyr-Racine, Charlie Mace, Annika H. G. Peter,  and Andrew Benson, “Anisotropic strong lensing as a probe of dark matter self-interactions,” Mon. Not. Roy. Astron. Soc. 526, 5455–5470 (2023), arXiv:2306.10109 [astro-ph.CO] .
  51. Xingyu Zhang, Hai-Bo Yu, Daneng Yang,  and Haipeng An, “Self-interacting dark matter interpretation of Crater II,”   (2024), arXiv:2401.04985 [astro-ph.GA] .
  52. Mark Vogelsberger, Jesus Zavala, Christine Simpson,  and Adrian Jenkins, “Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter,” Mon. Not. Roy. Astron. Soc. 444, 3684–3698 (2014), arXiv:1405.5216 [astro-ph.CO] .
  53. Andrew Robertson, David Harvey, Richard Massey, Vincent Eke, Ian G. McCarthy, Mathilde Jauzac, Baojiu Li,  and Joop Schaye, “Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons,” Mon. Not. Roy. Astron. Soc. 488, 3646–3662 (2019), arXiv:1810.05649 [astro-ph.CO] .
  54. Andrew Robertson, Richard Massey, Vincent Eke, Joop Schaye,  and Tom Theuns, “The surprising accuracy of isothermal Jeans modelling of self-interacting dark matter density profiles,” Mon. Not. Roy. Astron. Soc. 501, 4610–4634 (2021), arXiv:2009.07844 [astro-ph.CO] .
  55. Jonah C. Rose, Paul Torrey, Mark Vogelsberger,  and Stephanie O’Neil, “Unravelling the interplay between SIDM and baryons in MW haloes: defining where baryons dictate heat transfer,” Mon. Not. Roy. Astron. Soc. 519, 5623–5636 (2023), arXiv:2206.14830 [astro-ph.GA] .
  56. Claudio Mastromarino, Giulia Despali, Lauro Moscardini, Andrew Robertson, Massimo Meneghetti,  and Matteo Maturi, “Properties and observables of massive galaxies in self-interacting dark matter cosmologies,” Mon. Not. Roy. Astron. Soc. 524, 1515–1528 (2023), arXiv:2212.01403 [astro-ph.CO] .
  57. Elham Rahimi, Evan Vienneau, Nassim Bozorgnia,  and Andrew Robertson, “The local dark matter distribution in self-interacting dark matter halos,” JCAP 02, 040 (2023), arXiv:2210.06498 [astro-ph.CO] .
  58. Yi-Ming Zhong, Daneng Yang,  and Hai-Bo Yu, “The impact of baryonic potentials on the gravothermal evolution of self-interacting dark matter haloes,” Mon. Not. Roy. Astron. Soc. 526, 758–770 (2023), arXiv:2306.08028 [astro-ph.CO] .
  59. Peter Creasey, Omid Sameie, Laura V. Sales, Hai-Bo Yu, Mark Vogelsberger,  and Jesús Zavala, “Spreading out and staying sharp - creating diverse rotation curves via baryonic and self-interaction effects,” MNRAS 468, 2283–2295 (2017), arXiv:1612.03903 [astro-ph.GA] .
  60. A. Bastidas Fry, F. Governato, A. Pontzen, T. Quinn, M. Tremmel, L. Anderson, H. Menon, A. M. Brooks,  and J. Wadsley, “All about baryons: revisiting SIDM predictions at small halo masses,” Mon. Not. Roy. Astron. Soc. 452, 1468–1479 (2015), arXiv:1501.00497 [astro-ph.CO] .
  61. Demao Kong, Daneng Yang,  and Hai-Bo Yu, “Cold Dark Matter and Self-interacting Dark Matter Interpretations of the Strong Gravitational Lensing Object JWST-ER1,” Astrophys. J. Lett. 965, L19 (2024), arXiv:2402.15840 [astro-ph.GA] .
  62. Moritz S. Fischer, Nils-Henrik Durke, Katharina Hollingshausen, Claudius Hammer, Marcus Brüggen,  and Klaus Dolag, “The role of baryons in self-interacting dark matter mergers,” Mon. Not. Roy. Astron. Soc. 523, 5915–5933 (2023), arXiv:2302.07882 [astro-ph.CO] .
  63. Andrew Robertson et al., “The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons,” Mon. Not. Roy. Astron. Soc. 476, L20–L24 (2018), arXiv:1711.09096 [astro-ph.CO] .
  64. Victor H. Robles, James S. Bullock, Oliver D. Elbert, Alex Fitts, Alejandro González-Samaniego, Michael Boylan-Kolchin, Philip F. Hopkins, Claude-André Faucher-Giguère, Dušan Kereš,  and Christopher C. Hayward, “SIDM on FIRE: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies,” MNRAS 472, 2945–2954 (2017), arXiv:1706.07514 [astro-ph.GA] .
  65. Oliver D. Elbert, James S. Bullock, Manoj Kaplinghat, Shea Garrison-Kimmel, Andrew S. Graus,  and Miguel Rocha, “A Testable Conspiracy: Simulating Baryonic Effects on Self-interacting Dark Matter Halos,” Astrophys. J.  853, 109 (2018), arXiv:1609.08626 [astro-ph.GA] .
  66. Giulia Despali, Martin Sparre, Simona Vegetti, Mark Vogelsberger, Jesús Zavala,  and Federico Marinacci, “The interplay of Self-Interacting Dark Matter and baryons in shaping the halo evolution,” Mon. Not. Roy. Astron. Soc. 484, 4563 (2019), arXiv:1811.02569 [astro-ph.GA] .
  67. Rouven Essig, Samuel D. Mcdermott, Hai-Bo Yu,  and Yi-Ming Zhong, “Constraining Dissipative Dark Matter Self-Interactions,” Phys. Rev. Lett. 123, 121102 (2019), arXiv:1809.01144 [hep-ph] .
  68. Shengqi Yang, Xiaolong Du, Zhichao Carton Zeng, Andrew Benson, Fangzhou Jiang, Ethan O. Nadler,  and Annika H. G. Peter, “Gravothermal Solutions of SIDM Halos: Mapping from Constant to Velocity-dependent Cross Section,” Astrophys. J. 946, 47 (2023b), arXiv:2205.02957 [astro-ph.CO] .
  69. Fangzhou Jiang et al., “A semi-analytic study of self-interacting dark-matter haloes with baryons,” Mon. Not. Roy. Astron. Soc. 521, 4630–4644 (2023), arXiv:2206.12425 [astro-ph.CO] .
  70. Shengqi Yang, Fangzhou Jiang, Andrew Benson, Yi-Ming Zhong, Charlie Mace, Xiaolong Du, Zhichao Carton Zeng, Annika H. G. Peter,  and Moritz S. Fischer, “A quantitative comparison between velocity dependent SIDM cross sections constrained by the gravothermal and isothermal models,”   (2023c), arXiv:2305.05067 [astro-ph.CO] .
  71. Oliver D. Elbert, James S. Bullock, Manoj Kaplinghat, Shea Garrison-Kimmel, Andrew S. Graus,  and Miguel Rocha, “A Testable Conspiracy: Simulating Baryonic Effects on Self-Interacting Dark Matter Halos,” Astrophys. J. 853, 109 (2018), arXiv:1609.08626 [astro-ph.GA] .
  72. Omid Sameie, Peter Creasey, Hai-Bo Yu, Laura V. Sales, Mark Vogelsberger,  and Jesus Zavala, “The impact of baryonic discs on the shapes and profiles of self-interacting dark matter haloes,” Mon. Not. Roy. Astron. Soc. 479, 359–367 (2018), arXiv:1801.09682 [astro-ph.GA] .
  73. Nadav Joseph Outmezguine, Kimberly K. Boddy, Sophia Gad-Nasr, Manoj Kaplinghat,  and Laura Sagunski, “Universal gravothermal evolution of isolated self-interacting dark matter halos for velocity-dependent cross-sections,” Mon. Not. Roy. Astron. Soc. 523, 4786–4800 (2023), arXiv:2204.06568 [astro-ph.GA] .
  74. Daneng Yang and Hai-Bo Yu, “Gravothermal evolution of dark matter halos with differential elastic scattering,” JCAP 2022, 077 (2022), arXiv:2205.03392 [astro-ph.CO] .
  75. Julio F. Navarro, Carlos S. Frenk,  and Simon D. M. White, “A Universal Density Profile from Hierarchical Clustering,” Astrophys. J.  490, 493–508 (1997), arXiv:astro-ph/9611107 [astro-ph] .
  76. HongSheng Zhao, “Analytical models for galactic nuclei,” Mon. Not. Roy. Astron. Soc. 278, 488–496 (1996), arXiv:astro-ph/9509122 .
  77. Avishai Dekel, Guy Ishai, Aaron A. Dutton,  and Andrea V. Maccio, “Dark-matter halo profiles of a general cusp/core with analytic velocity and potential,” MNRAS 468, 1005–1022 (2017), arXiv:1610.00916 [astro-ph.GA] .
  78. Jonathan Freundlich, Fangzhou Jiang, Avishai Dekel, Nicolas Cornuault, Omry Ginzburg, Rémy Koskas, Sharon Lapiner, Aaron Dutton,  and Andrea V. Macciò, “The Dekel-Zhao profile: a mass-dependent dark-matter density profile with flexible inner slope and analytic potential, velocity dispersion, and lensing properties,” MNRAS 499, 2912–2933 (2020), arXiv:2004.08395 [astro-ph.GA] .
  79. Dylan Nelson et al., “The IllustrisTNG simulations: public data release,” Comput. Astrophys. Cosmol. 6, 2 (2019a), arXiv:1812.05609 [astro-ph.GA] .
  80. Dylan Nelson, Annalisa Pillepich, Volker Springel, Ruediger Pakmor, Rainer Weinberger, Shy Genel, Paul Torrey, Mark Vogelsberger, Federico Marinacci,  and Lars Hernquist, “First Results from the TNG50 Simulation: Galactic outflows driven by supernovae and black hole feedback,” Mon. Not. Roy. Astron. Soc. 490, 3234–3261 (2019b), arXiv:1902.05554 [astro-ph.GA] .
  81. Annalisa Pillepich et al., “First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time,” Mon. Not. Roy. Astron. Soc. 490, 3196–3233 (2019), arXiv:1902.05553 [astro-ph.GA] .
  82. Lars Hernquist, “An Analytical Model for Spherical Galaxies and Bulges,” Astrophys. J.  356, 359 (1990).
  83. D. Lynden-Bell and P. P. Eggleton, “On the consequences of the gravothermal catastrophe,” Mon. Not. Roy. Astron. Soc. 191, 483–498 (1980).
  84. Daneng Yang, Ethan O. Nadler,  and Hai-Bo Yu, “Testing the parametric self-interacting dark matter model using matched halos in cosmological simulations,”   (2024b), arXiv:24XX.XXXX [astro-ph.GA] .
  85. Oleg Y. Gnedin, Andrey V. Kravtsov, Anatoly A. Klypin,  and Daisuke Nagai, “Response of dark matter halos to condensation of baryons: Cosmological simulations and improved adiabatic contraction model,” Astrophys. J. 616, 16–26 (2004), arXiv:astro-ph/0406247 .
  86. Barbara S. Ryden and James E. Gunn, “Galaxy Formation by Gravitational Collapse,” Astrophys. J.  318, 15 (1987).
  87. Shin’ichiro Ando, Shunichi Horigome, Ethan O. Nadler, Daneng Yang,  and Hai-Bo Yu, “SASHIMI-SIDM: Semi-analytical subhalo modelling for self-interacting dark matter at sub-galactic scales,”   (2024), arXiv:2403.16633 [astro-ph.CO] .
  88. Aaron A. Dutton and Andrea V. Macciò, “Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles,” Mon. Not. Roy. Astron. Soc. 441, 3359–3374 (2014), arXiv:1402.7073 [astro-ph.CO] .
  89. Benjamin P. Moster, Thorsten Naab,  and Simon D. M. White, “Galactic star formation and accretion histories from matching galaxies to dark matter haloes,” MNRAS 428, 3121–3138 (2013), arXiv:1205.5807 [astro-ph.CO] .
  90. Timothy Carleton, Raphaël Errani, Michael Cooper, Manoj Kaplinghat, Jorge Peñarrubia,  and Yicheng Guo, “The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating,” MNRAS 485, 382–395 (2019), arXiv:1805.06896 [astro-ph.GA] .
  91. Peter S. Behroozi, Risa H. Wechsler,  and Charlie Conroy, “The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8,” Astrophys. J.  770, 57 (2013), arXiv:1207.6105 [astro-ph.CO] .
  92. A. van der Wel et al., “3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z=3𝑧3z=3italic_z = 3,” Astrophys. J. 788, 28 (2014), arXiv:1404.2844 [astro-ph.GA] .
  93. Aaron D. Ludlow, Julio F. Navarro, Michael Boylan-Kolchin, Philip E. Bett, Raul E. Angulo, Ming Li, Simon D. M. White, Carlos Frenk,  and Volker Springel, “The Mass Profile and Accretion History of Cold Dark Matter Halos,” Mon. Not. Roy. Astron. Soc. 432, 1103 (2013), arXiv:1302.0288 [astro-ph.CO] .
  94. Camila A. Correa, J. Stuart B. Wyithe, Joop Schaye,  and Alan R. Duffy, “The accretion history of dark matter haloes – III. A physical model for the concentration–mass relation,” Mon. Not. Roy. Astron. Soc. 452, 1217–1232 (2015), arXiv:1502.00391 [astro-ph.CO] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com