Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning-based Accelerated MR Cholangiopancreatography without Fully-sampled Data (2405.03732v2)

Published 6 May 2024 in eess.IV, cs.AI, cs.CV, and cs.LG

Abstract: The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3T and 0.55T. A total of 35 healthy volunteers underwent conventional two-fold accelerated MRCP scans at field strengths of 3T and 0.55T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively six-fold undersampled data obtained at 3T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions in a prospectively accelerated scenario to reflect real-world clinical applications and evaluated their adaptability to MRCP at 0.55T. Both DL reconstructions demonstrated a remarkable reduction in average acquisition time from 599/542 to 255/180 seconds for MRCP at 3T/0.55T. In both retrospective and prospective undersampling scenarios, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3T/0.55T while maintaining the image quality of conventional acquisition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jinho Kim (21 papers)
  2. Marcel Dominik Nickel (3 papers)
  3. Florian Knoll (23 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.