Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Android Malware: From Neural Embeddings to Hands-On Validation with BERTroid (2405.03620v2)

Published 6 May 2024 in cs.CR and cs.AI

Abstract: As cyber threats and malware attacks increasingly alarm both individuals and businesses, the urgency for proactive malware countermeasures intensifies. This has driven a rising interest in automated machine learning solutions. Transformers, a cutting-edge category of attention-based deep learning methods, have demonstrated remarkable success. In this paper, we present BERTroid, an innovative malware detection model built on the BERT architecture. Overall, BERTroid emerged as a promising solution for combating Android malware. Its ability to outperform state-of-the-art solutions demonstrates its potential as a proactive defense mechanism against malicious software attacks. Additionally, we evaluate BERTroid on multiple datasets to assess its performance across diverse scenarios. In the dynamic landscape of cybersecurity, our approach has demonstrated promising resilience against the rapid evolution of malware on Android systems. While the machine learning model captures broad patterns, we emphasize the role of manual validation for deeper comprehension and insight into these behaviors. This human intervention is critical for discerning intricate and context-specific behaviors, thereby validating and reinforcing the model's findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com