Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric formulation of generalized root-$T\bar{T}$ deformations (2405.03465v2)

Published 6 May 2024 in hep-th

Abstract: We develop a generic geometric formalism that incorporates both $T\bar{T}$-like and root-$T\bar{T}$-like deformations in arbitrary dimensions. This framework applies to a wide family of stress-energy tensor perturbations and encompasses various well-known field theories. Building upon the recently proposed correspondence between Ricci-based gravity and $T\bar{T}$-like deformations, we further extend this duality to include root-$T\bar{T}$-like perturbations. This refinement extends the potential applications of our approach and contributes to a deeper exploration of the interplay between stress tensor perturbations and gravitational dynamics. Among the various original outcomes detailed in this article, we have also obtained a deformation of the flat Jackiw-Teitelboim gravity action.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. A. Cavaglià, S. Negro, I. M. Szécsényi and R. Tateo, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10, 112 (2016) [arXiv:1608.05534 [hep-th]].
  2. F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B 915, 363-383 (2017) [arXiv:1608.05499 [hep-th]].
  3. A. B. Zamolodchikov, “Expectation value of composite field T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG in two-dimensional quantum field theory,” [arXiv:hep-th/0401146 [hep-th]].
  4. G. Bonelli, N. Doroud and M. Zhu, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformations in closed form,” JHEP 06, 149 (2018) [arXiv:1804.10967 [hep-th]].
  5. R. Conti, L. Iannella, S. Negro and R. Tateo, “Generalised Born-Infeld models, Lax operators and the T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG perturbation,” JHEP 11, 007 (2018) [arXiv:1806.11515 [hep-th]].
  6. R. Conti, S. Negro and R. Tateo, “The T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation and its geometric interpretation,” JHEP 02, 085 (2019) [arXiv:1809.09593 [hep-th]].
  7. J. Cardy, “The T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry,” JHEP 10, 186 (2018) [arXiv:1801.06895 [hep-th]].
  8. S. Datta and Y. Jiang, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed partition functions,” JHEP 08, 106 (2018) [arXiv:1806.07426 [hep-th]].
  9. O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, “Modular invariance and uniqueness of T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT,” JHEP 01, 086 (2019) [arXiv:1808.02492 [hep-th]].
  10. S. He, Y. Sun and Y. X. Zhang, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-flow effects on torus partition functions,” JHEP 09, 061 (2021) [arXiv:2011.02902 [hep-th]].
  11. M. Baggio and A. Sfondrini, “Strings on NS-NS Backgrounds as Integrable Deformations,” Phys. Rev. D 98, no.2, 021902 (2018) [arXiv:1804.01998 [hep-th]].
  12. A. Dei and A. Sfondrini, “Integrable S matrix, mirror TBA and spectrum for the stringy AdS3 × S3 × S3 × S1 WZW model,” JHEP 02, 072 (2019) [arXiv:1812.08195 [hep-th]].
  13. S. Chakraborty, A. Giveon and D. Kutasov, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG, T⁢J¯𝑇¯𝐽T\bar{J}italic_T over¯ start_ARG italic_J end_ARG and String Theory,” J. Phys. A 52, no.38, 384003 (2019) [arXiv:1905.00051 [hep-th]].
  14. N. Callebaut, J. Kruthoff and H. Verlinde, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT as a non-critical string,” JHEP 04, 084 (2020) [arXiv:1910.13578 [hep-th]].
  15. L. McGough, M. Mezei and H. Verlinde, “Moving the CFT into the bulk with T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04, 010 (2018) [arXiv:1611.03470 [hep-th]].
  16. P. Kraus, J. Liu and D. Marolf, “Cutoff AdS3 versus the T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 07, 027 (2018) [arXiv:1801.02714 [hep-th]].
  17. W. Cottrell and A. Hashimoto, “Comments on T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG double trace deformations and boundary conditions,” Phys. Lett. B 789, 251-255 (2019) [arXiv:1801.09708 [hep-th]].
  18. M. Taylor, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations in general dimensions,” Adv. Theor. Math. Phys. 27, no.1, 37-63 (2023) [arXiv:1805.10287 [hep-th]].
  19. T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, “Holography at finite cutoff with a T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT deformation,” JHEP 03, 004 (2019) [arXiv:1807.11401 [hep-th]].
  20. P. Caputa, S. Datta and V. Shyam, “Sphere partition functions &\&& cut-off AdS,” JHEP 05, 112 (2019) [arXiv:1902.10893 [hep-th]].
  21. M. Guica and R. Monten, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and the mirage of a bulk cutoff,” SciPost Phys. 10, no.2, 024 (2021) [arXiv:1906.11251 [hep-th]].
  22. D. J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG in AdS2 and Quantum Mechanics,” Phys. Rev. D 101, no.2, 026011 (2020) [arXiv:1907.04873 [hep-th]].
  23. Y. Li and Y. Zhou, “Cutoff AdS3 versus T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG CFT2 in the large central charge sector: correlators of energy-momentum tensor,” JHEP 12, 168 (2020) [arXiv:2005.01693 [hep-th]].
  24. S. He, Y. Li, Y. Z. Li and Y. Zhang, “Holographic torus correlators of stress tensor in AdS3/CFT2,” JHEP 06, 116 (2023) [arXiv:2303.13280 [hep-th]].
  25. S. He, Y. Z. Li and Y. Zhang, “Holographic torus correlators in AdS3subscriptAdS3\text{AdS}_{3}AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT gravity coupled to scalar field,” [arXiv:2311.09636 [hep-th]].
  26. S. Dubovsky, V. Gorbenko and M. Mirbabayi, “Asymptotic fragility, near AdS2 holography and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 09, 136 (2017) [arXiv:1706.06604 [hep-th]].
  27. S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG partition function from topological gravity,” JHEP 09, 158 (2018) [arXiv:1805.07386 [hep-th]].
  28. A. J. Tolley, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations, massive gravity and non-critical strings,” JHEP 06, 050 (2020) [arXiv:1911.06142 [hep-th]].
  29. L. V. Iliesiu, J. Kruthoff, G. J. Turiaci and H. Verlinde, “JT gravity at finite cutoff,” SciPost Phys. 9, 023 (2020) [arXiv:2004.07242 [hep-th]].
  30. S. Okumura and K. Yoshida, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformation and Liouville gravity,” Nucl. Phys. B 957, 115083 (2020) [arXiv:2003.14148 [hep-th]].
  31. S. Ebert, C. Ferko, H. Y. Sun and Z. Sun, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG in JT Gravity and BF Gauge Theory,” SciPost Phys. 13, no.4, 096 (2022) [arXiv:2205.07817 [hep-th]].
  32. Y. Jiang, “A pedagogical review on solvable irrelevant deformations of 2D quantum field theory,” Commun. Theor. Phys. 73, no.5, 057201 (2021) [arXiv:1904.13376 [hep-th]].
  33. P. Caputa, P. Caputa, S. Datta, S. Datta, Y. Jiang, Y. Jiang, P. Kraus and P. Kraus, “Geometrizing T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 03, 140 (2021) [erratum: JHEP 09, 110 (2022)] [arXiv:2011.04664 [hep-th]].
  34. S. Dubovsky, S. Negro and M. Porrati, “Topological gauging and double current deformations,” JHEP 05, 240 (2023) [arXiv:2302.01654 [hep-th]].
  35. R. Conti, J. Romano and R. Tateo, “Metric approach to a T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-like deformation in arbitrary dimensions,” JHEP 09, 085 (2022) [arXiv:2206.03415 [hep-th]].
  36. H. Babaei-Aghbolagh, K. Babaei Velni, D. Mahdavian Yekta and H. Mohammadzadeh, “Marginal T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-like deformation and modified Maxwell theories in two dimensions,” Phys. Rev. D 106, no.8, 086022 (2022) [arXiv:2206.12677 [hep-th]].
  37. C. Ferko, A. Sfondrini, L. Smith and G. Tartaglino-Mazzucchelli, “Root-T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformations in Two-Dimensional Quantum Field Theories,” Phys. Rev. Lett. 129, no.20, 201604 (2022) [arXiv:2206.10515 [hep-th]].
  38. R. Borsato, C. Ferko and A. Sfondrini, “Classical integrability of root-T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flows,” Phys. Rev. D 107, no.8, 086011 (2023) [arXiv:2209.14274 [hep-th]].
  39. S. Ebert, C. Ferko and Z. Sun, “Root-T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed boundary conditions in holography,” Phys. Rev. D 107, no.12, 12 (2023) [arXiv:2304.08723 [hep-th]].
  40. J. Tian, T. Lai and F. Omidi, “Modular transformations of on-shell actions of (root-)T⁢T¯T¯T\text{T}\overline{\text{T}}T over¯ start_ARG T end_ARG deformed holographic CFTs,” [arXiv:2404.16354 [hep-th]].
  41. H. Babaei-Aghbolagh, K. Babaei Velni, D. M. Yekta and H. Mohammadzadeh, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows in non-linear electrodynamic theories and S-duality,” JHEP 04, 187 (2021) [arXiv:2012.13636 [hep-th]].
  42. H. Babaei-Aghbolagh, K. Babaei Velni, D. M. Yekta and H. Mohammadzadeh, “Manifestly SL(2, R) Duality-Symmetric Forms in ModMax Theory,” JHEP 12, 147 (2022) [arXiv:2210.13196 [hep-th]].
  43. C. Ferko, S. M. Kuzenko, L. Smith and G. Tartaglino-Mazzucchelli, “Duality-invariant nonlinear electrodynamics and stress tensor flows,” Phys. Rev. D 108, no.10, 106021 (2023) [arXiv:2309.04253 [hep-th]].
  44. T. Flöss, D. Roest and T. Westerdijk, “Non-linear electrodynamics from massive gravity,” JHEP 02, 194 (2024) [arXiv:2308.04349 [hep-th]].
  45. C. Ferko, Y. Hu, Z. Huang, K. Koutrolikos and G. Tartaglino-Mazzucchelli, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows and 3⁢d3𝑑3d3 italic_d nonlinear supersymmetry,” SciPost Phys. 16, no.1, 038 (2024) [arXiv:2302.10410 [hep-th]].
  46. C. Ferko, S. M. Kuzenko, K. Lechner, D. P. Sorokin and G. Tartaglino-Mazzucchelli, “Interacting Chiral Form Field Theories and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like Flows in Six and Higher Dimensions,” [arXiv:2402.06947 [hep-th]].
  47. T. Morone, S. Negro and R. Tateo, “Gravity and T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flows in higher dimensions,” [arXiv:2401.16400 [hep-th]].
  48. G. J. Olmo and D. Rubiera-Garcia, “Some recent results on Ricci-based gravity theories,” Int. J. Mod. Phys. D 31, no.11, 2240012 (2022) [arXiv:2203.04116 [gr-qc]].
  49. I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “A non-linear duality-invariant conformal extension of Maxwell’s equations,” Phys. Rev. D 102, 121703 (2020) [arXiv:2007.09092 [hep-th]].
  50. I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “On p-form gauge theories and their conformal limits,” JHEP 03, 022 (2021) [arXiv:2012.09286 [hep-th]].
  51. H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta and H. Mohammadzadeh, “Emergence of non-linear electrodynamic theories from T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-like deformations,” Phys. Lett. B 829, 137079 (2022) [arXiv:2202.11156 [hep-th]].
  52. C. Ferko, L. Smith and G. Tartaglino-Mazzucchelli, “On Current-Squared Flows and ModMax Theories,” SciPost Phys. 13, no.2, 012 (2022) [arXiv:2203.01085 [hep-th]].
  53. J. Beltran Jimenez, L. Heisenberg, G. J. Olmo and D. Rubiera-Garcia, “Born–Infeld inspired modifications of gravity,” Phys. Rept. 727, 1-129 (2018) [arXiv:1704.03351 [gr-qc]].
  54. J. Liu, J. Haruna and M. Yamada, “Nonperturbative aspects of two-dimensional T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed scalar theory from functional renormalization group,” Phys. Rev. D 109, no.6, 6 (2024) [arXiv:2309.15584 [hep-th]].
  55. S. Pasterski, S. H. Shao and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D 96, no.6, 065026 (2017) [arXiv:1701.00049 [hep-th]].
  56. S. He, P. Mao and X. C. Mao, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed soft theorem,” Phys. Rev. D 107, no.10, L101901 (2023) [arXiv:2209.01953 [hep-th]].
  57. S. He, P. Mao and X. C. Mao, “Loop corrections versus marginal deformation in celestial holography,” [arXiv:2307.02743 [hep-th]].
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com