Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GLIP: Electromagnetic Field Exposure Map Completion by Deep Generative Networks (2405.03384v1)

Published 6 May 2024 in cs.LG

Abstract: In Spectrum cartography (SC), the generation of exposure maps for radio frequency electromagnetic fields (RF-EMF) spans dimensions of frequency, space, and time, which relies on a sparse collection of sensor data, posing a challenging ill-posed inverse problem. Cartography methods based on models integrate designed priors, such as sparsity and low-rank structures, to refine the solution of this inverse problem. In our previous work, EMF exposure map reconstruction was achieved by Generative Adversarial Networks (GANs) where physical laws or structural constraints were employed as a prior, but they require a large amount of labeled data or simulated full maps for training to produce efficient results. In this paper, we present a method to reconstruct EMF exposure maps using only the generator network in GANs which does not require explicit training, thus overcoming the limitations of GANs, such as using reference full exposure maps. This approach uses a prior from sensor data as Local Image Prior (LIP) captured by deep convolutional generative networks independent of learning the network parameters from images in an urban environment. Experimental results show that, even when only sparse sensor data are available, our method can produce accurate estimates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. A. M. Niknejad, S. Thyagarajan, E. Alon, Y. Wang, and C. Hull, “A circuit designer’s guide to 5G mm-Wave,” in 2015 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8, 2015.
  2. P. Ahokangas, M. Matinmikko-Blue, S. Yrjölä, and H. Hämmäinen, “Platform configurations for local and private 5G networks in complex industrial multi-stakeholder ecosystems,” Telecommunications Policy, vol. 45, no. 5, p. S0308596121000331, 2021.
  3. P. Gajšek, P. Ravazzani, J. Wiart, J. Grellier, T. Samaras, and G. Thuróczy, “Electromagnetic field exposure assessment in europe radiofrequency fields (10 MHz–6 GHz),” Journal of exposure science & environmental epidemiology, vol. 25, no. 1, pp. 37–44, 2015.
  4. International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for limiting exposure to electromagnetic fields (100 KHz to 300 GHz),” Health physics, vol. 118, no. 5, pp. 483–524, 2020.
  5. W. H. Bailey, R. Bodemann, J. Bushberg, C.-K. Chou, R. Cleveland, A. Faraone, K. R. Foster, K. E. Gettman, K. Graf, T. Harrington, et al., “Synopsis of IEEE std c95. 1™-2019 “IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz”,” IEEE Access, vol. 7, pp. 171346–171356, 2019.
  6. G. Matheron, “Principles of geostatistics,” Economic geology, vol. 58, no. 8, pp. 1246–1266, 1963.
  7. Y. Teganya and D. Romero, “Data-driven spectrum cartography via deep completion autoencoders,” in ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1–7, IEEE, 2020.
  8. S. Wang and J. Wiart, “Sensor-aided EMF exposure assessments in an urban environment using artificial neural networks,” International Journal of Environmental Research and Public Health, vol. 17, no. 9, p. 3052, 2020.
  9. S. Wang, T. Mazloum, and J. Wiart, “Prediction of RF-EMF exposure by outdoor drive test measurements,” in Telecom, vol. 3, pp. 396–406, MDPI, 2022.
  10. X. Han, L. Xue, F. Shao, and Y. Xu, “A power spectrum maps estimation algorithm based on generative adversarial networks for underlay cognitive radio networks,” Sensors, vol. 20, no. 1, 2020.
  11. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems, vol. 27, 2014.
  12. Z. Li, J. Cao, H. Wang, and M. Zhao, “Sparsely self-supervised generative adversarial nets for radio frequency estimation,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 11, pp. 2428–2442, 2019.
  13. M. Mallik, A. A. Tesfay, B. Allaert, R. Kassi, E. Egea-Lopez, J.-M. Molina-Garcia-Pardo, J. Wiart, D. P. Gaillot, and L. Clavier, “Towards outdoor electromagnetic field exposure mapping generation using conditional GANs,” Sensors, vol. 22, no. 24, p. 9643, 2022.
  14. M. Mallik, S. Kharbech, T. Mazloum, S. Wang, J. Wiart, D. P. Gaillot, and L. Clavier, “EME-Net: A U-net-based indoor emf exposure map reconstruction method,” in 2022 16th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, IEEE, 2022.
  15. M. Mallik, B. Allaert, A. Tesfay, D. P. Gaillot, J. Wiart, and L. Clavier, “EME-GAN: A conditional generative adversarial network based indoor EMF exposure map reconstruction,” in 29Â Colloque sur le traitement du signal et des image, vol. 23, pp. 745–748, 2023.
  16. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation. arxiv150504597 cs. published online may 18, 2015,” 2021.
  17. M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.
  18. E. Egea-Lopez, F. Losilla, J. Pascual-Garcia, and J. M. Molina-Garcia-Pardo, “Vehicular networks simulation with realistic physics,” IEEE Access, vol. 7, pp. 44021–44036, 2019.
  19. N. Amiot, M. Laaraiedh, and B. Uguen, “Pylayers: An open source dynamic simulator for indoor propagation and localization,” in 2013 IEEE International Conference on Communications Workshops (ICC), pp. 84–88, IEEE, 2013.
  20. L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light field reconstruction using sparsity in the continuous fourier domain,” ACM Transactions on Graphics (TOG), vol. 34, no. 1, pp. 1–13, 2014.
  21. I. Daribo and B. Pesquet-Popescu, “Depth-aided image inpainting for novel view synthesis,” in 2010 IEEE International workshop on multimedia signal processing, pp. 167–170, IEEE, 2010.
  22. Z. Long, Y. Liu, L. Chen, and C. Zhu, “Low rank tensor completion for multiway visual data,” Signal processing, vol. 155, pp. 301–316, 2019.
  23. P. Szczypkowski, M. Pawlowska, and R. Lapkiewicz, “3D super-resolution optical fluctuation imaging with temporal focusing two-photon excitation,” 2024.
  24. T. Layer, M. Blaickner, B. Knäusl, D. Georg, J. Neuwirth, R. P. Baum, C. Schuchardt, S. Wiessalla, and G. Matz, “Pet image segmentation using a gaussian mixture model and markov random fields,” EJNMMI physics, vol. 2, pp. 1–15, 2015.
  25. A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale modeling & simulation, vol. 4, no. 2, pp. 490–530, 2005.

Summary

We haven't generated a summary for this paper yet.