Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Universal List Decoding Algorithm with Application to Decoding of Polar Codes (2405.03252v1)

Published 6 May 2024 in cs.IT and math.IT

Abstract: This paper is concerned with a guessing codeword decoding (GCD) of linear block codes. Compared with the guessing noise decoding (GND), which is only efficient for high-rate codes, the GCD is efficient for not only high-rate codes but also low-rate codes. We prove that the GCD typically requires a fewer number of queries than the GND. Compared with the ordered statistics decoding (OSD), the GCD does not require the online Gaussian elimination (GE). In addition to limiting the maximum number of searches, we suggest limiting the radius of searches in terms of soft weights or tolerated performance loss to further reduce the decoding complexity, resulting in the so-called truncated GCD. The performance gap between the truncated GCD and the optimal decoding can be upper bounded approximately by the saddlepoint approach or other numerical approaches. The derived upper bound captures the relationship between the performance and the decoding parameters, enabling us to balance the performance and the complexity by optimizing the decoding parameters of the truncated GCD. We also introduce a parallel implementation of the (truncated) GCD algorithm to reduce decoding latency without compromising performance. Another contribution of this paper is the application of the GCD to the polar codes. We propose a multiple-bit-wise decoding algorithm over a pruned tree for the polar codes, referred to as the successive-cancellation list (SCL) decoding algorithm by GCD. First, we present a strategy for pruning the conventional polar decoding tree based on the complexity analysis rather than the specific bit patterns. Then we apply the GCD algorithm in parallel aided by the early stopping criteria to the leaves of the pruned tree. Simulation results show that, without any performance loss as justified by analysis, the proposed decoding algorithm can significantly reduce the decoding latency of the polar codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. 3GPP, “Multiplexing and channel coding V.15.3.0,” Tech. Rep. 38.212, 2018.
  2. 3GPP, “Multiplexing and channel coding V.16.4.0,” Tech. Rep. 38.212, 2020.
  3. ITU-R, “Future technology trends of terrestrial international mobile telecommunications systems towards 2030 and beyond,” Tech. Rep., Nov 2022.
  4. H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, “6G wireless systems: Vision, requirements, challenges, insights, and opportunities,” Proc. IEEE, vol. 109, no. 7, pp. 1166–1199, 2021.
  5. M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja, C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, and B. Vucetic, “Short block-length codes for ultra-reliable low latency communications,” IEEE Commun. Mag., vol. 57, no. 2, pp. 130–137, 2019.
  6. B. Dorsch, “A decoding algorithm for binary block codes and J-ary output channels (corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 391–394, 1974.
  7. M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 1379–1396, 1995.
  8. C. Yue, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “Segmentation-discarding ordered-statistic decoding for linear block codes,” in Proc. IEEE Global Commun. Conf.   IEEE, 2019, pp. 1–6.
  9. C. Yue, M. Shirvanimoghaddam, G. Park, O.-S. Park, B. Vucetic, and Y. Li, “Probability-based ordered-statistics decoding for short block codes,” IEEE Commun. Lett., vol. 25, no. 6, pp. 1791–1795, 2021.
  10. ——, “Linear-equation ordered-statistics decoding,” IEEE Trans. on Commun., vol. 70, no. 11, pp. 7105–7123, 2022.
  11. Y. Wang, J. Liang, and X. Ma, “Local constraint-based ordered statistics decoding for short block codes,” in Proc. IEEE Inf. Theory Workshop, 2022, pp. 107–112.
  12. J. Liang, Y. Wang, S. Cai, and X. Ma, “A low-complexity ordered statistic decoding of short block codes,” IEEE Commun. Lett., vol. 27, no. 2, pp. 400–403, 2023.
  13. C. Choi and J. Jeong, “Fast soft decision decoding algorithm for linear block codes using permuted generator matrices,” IEEE Commun. Lett., vol. 25, no. 12, pp. 3775–3779, Dec 2021.
  14. C. Yue, M. Shirvanimoghaddam, B. Vucetic, and Y. Li, “Ordered-statistics decoding with adaptive Gaussian elimination reduction for short codes,” in Proc. IEEE Global Commun. Conf., Dec 2022, pp. 492–497.
  15. M. Fossorier, M. Shakiba-Herfeh, and H. Zhang, “Modified OSD algorithm with reduced Gaussian elimination,” 2024, http://dx.doi.org/10.13140/RG.2.2.33271.84648.
  16. Y. Wang, J. Liang, Q. Wang, and X. Ma, “Representative ordered statistics decoding of staircase matrix codes,” Submitted to IEEE Trans. Commun., 2023.
  17. Q. Wang, Y. Wang, Y. Wang, J. Liang, and X. Ma, “Random staircase generator matrix codes,” arXiv preprint arXiv:2402.16245, 2024.
  18. X. Zheng, Q. Wang, B. Wei, and X. Ma, “Quasi-OSD of binary image of RS codes with applications to JSCC,” in Proc. IEEE Int. Symp. Inf. Theory, 2024, accepted.
  19. L. Yang and L. Chen, “Low-latency ordered statistics decoding of BCH codes,” in Proc. IEEE Inf. Theory Workshop, 2022, pp. 404–409.
  20. K. R. Duffy, J. Li, and M. Médard, “Guessing noise, not code-words,” in Proc. IEEE Int. Symp. Inf. Theory, 2018, pp. 671–675.
  21. K. R. Duffy, J. Li, and M. Médard, “Capacity-achieving guessing random additive noise decoding,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4023–4040, 2019.
  22. A. Valembois and M. Fossorier, “An improved method to compute lists of binary vectors that optimize a given weight function with application to soft-decision decoding,” IEEE Commun. Lett., vol. 5, no. 11, pp. 456–458, Nov. 2001.
  23. A. Solomon, K. R. Duffy, and M. Médard, “Soft maximum likelihood decoding using GRAND,” in Proc. IEEE Int. Conf. Commun., 2020, pp. 1–6.
  24. K. R. Duffy, M. Médard, and W. An, “Guessing random additive noise decoding with symbol reliability inf. (SRGRAND),” IEEE Trans. Commun., vol. 70, no. 1, pp. 3–18, 2022.
  25. K. R. Duffy, W. An, and M. Médard, “Ordered reliability bits guessing random additive noise decoding,” IEEE Trans. Signal Process., vol. 70, pp. 4528–4542, 2022.
  26. Y. Wang, J. Liang, and X. Ma, “Partially constrained GRAND of linear block codes,” arXiv preprint arXiv:2308.14259, 2023.
  27. E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.
  28. I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. IEEE Int. Symp. Inf. Theory, 2011, pp. 1–5.
  29. I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, 2015.
  30. K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1668–1671, 2012.
  31. A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1378–1380, 2011.
  32. S. A. Hashemi, C. Condo, and W. J. Gross, “Simplified successive-cancellation list decoding of polar codes,” in Proc. IEEE Int. Symp. Inf. Theory, 2016, pp. 815–819.
  33. G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders: Algorithm and implementation,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 946–957, 2014.
  34. G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list decoders for polar codes,” IEEE J. Sel. Areas Commun., vol. 34, no. 2, pp. 318–328, 2016.
  35. S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-cancellation list decoders for polar codes,” IEEE Trans. on Signal Process., vol. 65, no. 21, pp. 5756–5769, 2017.
  36. M. Hanif and M. Ardakani, “Fast successive-cancellation decoding of polar codes: Identification and decoding of new nodes,” IEEE Commun. Lett., vol. 21, no. 11, pp. 2360–2363, 2017.
  37. M. H. Ardakani, M. Hanif, M. Ardakani, and C. Tellambura, “Fast successive-cancellation-based decoders of polar codes,” IEEE Trans. on Commun., vol. 67, no. 7, pp. 4562–4574, 2019.
  38. C. Condo, V. Bioglio, and I. Land, “Generalized fast decoding of polar codes,” in Proc. IEEE Glob. Commun. Conf., 2018, pp. 1–6.
  39. H. Zheng, A. Balatsoukas-Stimming, Z. Cao, and T. Koonen, “Implementation of a high-throughput fast-SSC polar decoder with sequence repetition node,” in Proc. IEEE Workshop Signal Process. Syst., 2020, pp. 1–6.
  40. H. Zheng, S. A. Hashemi, A. Balatsoukas-Stimming, Z. Cao, T. Koonen, J. M. Cioffi, and A. Goldsmith, “Threshold-based fast successive-cancellation decoding of polar codes,” IEEE Trans. on Commun., vol. 69, no. 6, pp. 3541–3555, 2021.
  41. Y. Ren, A. T. Kristensen, Y. Shen, A. Balatsoukas-Stimming, C. Zhang, and A. Burg, “A sequence repetition node-based successive cancellation list decoder for 5G polar codes: Algorithm and implementation,” IEEE Trans. on Signal Process., vol. 70, pp. 5592–5607, 2022.
  42. X. Ma, “Guessing what, noise or codeword?” arXiv preprint arXiv:2401.16804, 2024.
  43. P. Elias, “List decoding for noisy channels,” in Proc. IRE WESCON Convention Rec., vol. 2, 1957, p. 94–104.
  44. A. Martinez and A. G. i Fàbregas, “Saddlepoint approximation of random-coding bounds,” in Proc. Inf. Theory Appl. Workshop, 2011, pp. 1–6.
  45. J. Font-Segura, G. Vazquez-Vilar, A. Martinez, A. Guillén i Fàbregas, and A. Lancho, “Saddlepoint approximations of lower and upper bounds to the error probability in channel coding,” in Proc. 52nd Annu. Conf. Inf. Sci. Syst., 2018, pp. 1–6.
  46. A. Valembois and M. Fossorier, “A comparison between between “most-reliable-basis reprocessing” strategies,” IEICE Trans. Fundamentals, vol. E85-A, no. 7, pp. 1727–1741, 2002.
  47. S. Tang, “Research on low-complexity soft decoding algorithms for Reed-Solomon codes,” Ph.D. dissertation, Sun Yat-sen University, 2013.
  48. S. M. Abbas, T. Tonnellier, F. Ercan, M. Jalaleddine, and W. J. Gross, “High-throughput VLSI architecture for soft-decision decoding with ORBGRAND,” in IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2021, pp. 8288–8292.
  49. C. Condo, “A fixed latency ORBGRAND decoder architecture with LUT-aided error-pattern scheduling,” IEEE Trans. Circuits Sys. I: Regular Papers, vol. 69, no. 5, pp. 2203–2211, 2022.
  50. M. Jalaleddine, H. Zhou, J. Li, and W. J. Gross, “Partial ordered statistics decoding with enhanced error patterns,” in Proc. IEEE Int. Symp. Inf. Theory, 2023, pp. 1096–1100.
  51. J. Liang and X. Ma, “A random coding approach to performance analysis of the ordered statistic decoding with local constraints,” arXiv preprint arXiv:2401.16709, 2024.
  52. J. Li, S. Cai, W. Lin, B. Wei, and X. Ma, “Improved block oriented unit memory convolutional codes,” IEEE Trans. on Commun., vol. 69, no. 12, pp. 7934–7944, 2021.
  53. S. Cai and X. Ma, “Twisted-pair superposition transmission,” IEEE Trans. on Commun., vol. 69, no. 9, pp. 5663–5671, 2021.
  54. N. Goela, S. B. Korada, and M. Gastpar, “On LP decoding of polar codes,” in Proc. IEEE Inf. Theory Workshop, 2010, pp. 1–5.
Citations (2)

Summary

We haven't generated a summary for this paper yet.