Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Discrete Precoding and RIS Optimization for RIS-Assisted MU-MIMO Communication Systems (2405.03022v2)

Published 5 May 2024 in eess.SP

Abstract: This paper considers a multi-user multiple-input multiple-output (MU-MIMO) system where the downlink communication between a base station (BS) and multiple user equipments (UEs) is aided by a reconfigurable intelligent surface (RIS). We study the sum rate maximization problem with the objective of finding the optimal precoding vectors and RIS configuration. Due to fronthaul limitation, each entry of the precoding vectors must be picked from a finite set of quantization labels. Furthermore, two scenarios for the RIS are investigated, one with continuous infinite-resolution reflection coefficients and another with discrete finite-resolution reflection coefficients. A novel framework is developed which, in contrast to the common literature that only offers sub-optimal solutions for optimization of discrete variables, is able to find the optimal solution to problems involving discrete constraints. Based on the classical weighted minimum mean square error (WMMSE), we transform the original problem into an equivalent weighted sum mean square error (MSE) minimization problem and solve it iteratively. We compute the optimal precoding vectors via an efficient algorithm inspired by sphere decoding (SD). For optimizing the discrete RIS configuration, two solutions based on the SD algorithm are developed: An optimal SD-based algorithm and a low-complexity heuristic method that can efficiently obtain RIS configuration without much loss in optimality. The effectiveness of the presented algorithms is corroborated via numerical simulations where it is shown that the proposed designs are remarkably superior to the commonly used benchmarks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2450–2525, November 2020.
  2. Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 3313–3351, May 2021.
  3. W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, “Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 421–439, January 2021.
  4. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394 – 5409, November 2019.
  5. H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks,” IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3064–3076, May 2020.
  6. C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Transactions on Wireless Communications, vol. 19, no. 8, pp. 5218–5233, August 2020.
  7. S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 8, pp. 2200–2210, August 2007.
  8. H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 7, pp. 2524–2531, July 2011.
  9. L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. Di Renzo, C.-B. Chae, and L. Hanzo, “Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results,” IEEE Access, vol. 8, pp. 45 913–45 923, March 2020.
  10. J. Rains, J. ur Rehman Kazim, A. Tukmanov, T. J. Cui, L. Zhang, Q. H. Abbasi, and M. A. Imran, “High-resolution programmable scattering for wireless coverage enhancement: An indoor field trial campaign,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 1, pp. 518–530, January 2023.
  11. W. Zhang, “A general framework for transmission with transceiver distortion and some applications,” IEEE Transactions on Communications, vol. 60, no. 2, pp. 384–399, February 2012.
  12. E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits,” IEEE Transactions on Information Theory, vol. 60, no. 11, pp. 7112–7139, November 2014.
  13. S. R. Aghdam, S. Jacobsson, U. Gustavsson, G. Durisi, C. Studer, and T. Eriksson, “Distortion-aware linear precoding for massive MIMO downlink systems with nonlinear power amplifiers,” unpublished paper, [Online]. Available: https://arxiv.org/pdf/2012.13337.pdf, 2020.
  14. C. Mollén, J. Choi, E. G. Larsson, and R. W. Heath, “Uplink performance of wideband massive MIMO with one-bit ADCs,” IEEE Transactions on Wireless Communications, vol. 16, no. 1, pp. 87–100, January 2016.
  15. A. Mezghani, R. Ghiat, and J. A. Nossek, “Transmit processing with low resolution D/A-converters,” in 2009 16th IEEE International Conference on Electronics, Circuits and Systems-(ICECS 2009).   IEEE, 2009, pp. 683–686.
  16. S. Jacobsson, G. Durisi, M. Coldrey, and C. Studer, “Linear precoding with low-resolution DACs for massive MU-MIMO-OFDM downlink,” IEEE Transactions on Wireless Communications, vol. 18, no. 3, pp. 1595–1609, March 2019.
  17. P. Parida, H. S. Dhillon, and A. F. Molisch, “Downlink performance analysis of cell-free massive MIMO with finite fronthaul capacity,” in 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 2018, pp. 1–6.
  18. Y. Khorsandmanesh, E. Björnson, and J. Jaldén, “Optimized precoding for MU-MIMO with fronthaul quantization,” IEEE Transactions on Wireless Communications, vol. 22, no. 11, pp. 7102 – 7115, November 2023.
  19. ——, “Fronthaul quantization-aware MU-MIMO precoding for sum rate maximization,” in ICC 2023-IEEE International Conference on Communications.   IEEE, 2023, pp. 1332–1337.
  20. Q. Wu and R. Zhang, “Beamforming optimization for intelligent reflecting surface with discrete phase shifts,” in IEEE ICASSP, 2019, pp. 7830–7833.
  21. B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, “Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1809–1822, August 2020.
  22. Q. Wu and R. Zhang, “Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts,” IEEE Transactions on Communications, vol. 68, no. 3, pp. 1838–1851, March 2020.
  23. G. C. Alexandropoulos and E. Vlachos, “A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation,” in 2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2020, pp. 9175–9179.
  24. H. Zhang, “Joint waveform and phase shift design for RIS-assisted integrated sensing and communication based on mutual information,” IEEE Communication Letters, vol. 26, no. 10, pp. 2317–2321, October 2022.
  25. S. Ren, K. Shen, X. Li, X. Chen, and Z.-Q. Luo, “A linear time algorithm for the optimal discrete IRS beamforming,” IEEE Wireless Communications Letters, vol. 12, no. 3, pp. 496–500, March 2023.
  26. P. Ramezani, Y. Khorsandmanesh, and E. Björnson, “A novel discrete phase shift design for RIS-assisted multi-user MIMO,” in 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).   IEEE, 2023, pp. 1–5.
  27. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8, pp. 22 201 – 2214, August 2002.
  28. B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. expected complexity,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2806–2818, August 2005.
  29. H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm II. generalizations, second-order statistics, and applications to communications,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2819–2834, August 2005.
  30. J. Li and J. Liu, “Sum rate maximization via reconfigurable intelligent surface in UAV communication: Phase shift and trajectory optimization,” in 2020 IEEE/CIC International Conference on Communications in China (ICCC), 2020, pp. 124–129.
  31. H. Zhang, S. Ma, Z. Shi, X. Zhao, and G. Yang, “Sum-rate maximization of RIS-aided multi-user MIMO systems with statistical CSI,” IEEE Transactions on Wireless Communications, vol. 22, no. 7, pp. 4788–4801, July 2023.
  32. X. Gan, C. Zhong, C. Huang, and Z. Zhang, “RIS-assisted multi-user MISO communications exploiting statistical CSI,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 6781–6792, October 2021.
  33. Z.-Q. He and X. Yuan, “Cascaded channel estimation for large intelligent metasurface assisted massive MIMO,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 210–214, February 2020.
  34. Z. Zhou, N. Ge, Z. Wang, and L. Hanzo, “Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decomposition-aided channel estimation approach,” IEEE Transactions on Communications, vol. 69, no. 2, pp. 1228–1243, February 2021.
  35. M. Haghshenas, P. Ramezani, M. Magarini, and E. Björnson, “Parametric channel estimation with short pilots in RIS-assisted near- and far-field communications,” IEEE Transactions on Wireless Communications, pp. 1–1, March 2024.
  36. A. L. Swindlehurst, G. Zhou, R. Liu, C. Pan, and M. Li, “Channel estimation with reconfigurable intelligent surfaces—a general framework,” Proceedings of the IEEE, vol. 110, no. 9, pp. 1312–1338, September 2022.
  37. D. Hui and D. Neuhoff, “Asymptotic analysis of optimal fixed-rate uniform scalar quantization,” IEEE Transactions on Information Theory, vol. 47, no. 3, pp. 957–977, March 2001.
  38. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4331–4340, September 2011.
  39. S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “Quantized precoding for massive MU-MIMO,” IEEE Transactions on Communications, vol. 65, no. 11, pp. 4670–4684, November 2017.
  40. O. Castañeda, T. Goldstein, and C. Studer, “POKEMON: A non-linear beamforming algorithm for 1-bit massive MIMO,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 3464–3468.
  41. E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1639–1642, July 1999.
  42. S. Han and C. Tellambura, “A complexity-efficient sphere decoder for mimo systems,” in 2011 IEEE International Conference on Communications (ICC), 2011, pp. 1–5.
  43. M. Joham, W. Utschick, and J. Nossek, “Linear transmit processing in MIMO communications systems,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2700–2712, August 2005.
  44. T. Cui and C. Tellambura, “An efficient generalized sphere decoder for rank-deficient MIMO systems,” in IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004, vol. 5.   IEEE, 2004, pp. 3689–3693.
  45. J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in digital communications,” IEEE Transactions on Signal Processing, vol. 53, no. 4, pp. 1474–1484, April 2005.
  46. Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and channel estimation for holographic massive MIMO with planar arrays,” IEEE Wireless Communications Letters, vol. 11, no. 5, pp. 997–1001, May 2022.
  47. E. Björnson, Ö. Özdogan, and E. G. Larsson, “Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?” IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 244–248, February 2020.
  48. L. G. Barbero and J. S. Thompson, “Fixing the complexity of the sphere decoder for MIMO detection,” IEEE Transactions on Wireless Communications, vol. 7, no. 6, pp. 2131–2142, June 2008.
  49. J. Ahn, H.-N. Lee, and K. Kim, “Schnorr-Euchner sphere decoder with statistical pruning for MIMO systems,” in 2009 6th International Symposium on Wireless Communication Systems, September 2009, pp. 619–623.
  50. A. Ghasemmehdi and E. Agrell, “Faster recursions in sphere decoding,” IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3530–3536, June 2011.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com