Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Polarization Purity and Dispersion Characteristics of Nested Antiresonant Nodeless Hollow-Core Optical Fiber at Near- and Short-wave-IR Wavelengths for Quantum Communications (2405.02993v2)

Published 5 May 2024 in physics.optics and quant-ph

Abstract: Advancements in quantum communication and sensing require improved optical transmission that ensures excellent state purity and reduced losses. While free-space optical communication is often preferred, its use becomes challenging over long distances due to beam divergence, atmospheric absorption, scattering, and turbulence, among other factors. In the case of polarization encoding, traditional silica-core optical fibers, though commonly used, struggle with maintaining state purity due to stress-induced birefringence. Hollow core fibers, and in particular nested antiresonant nodeless fibers (NANF), have recently been shown to possess unparalleled polarization purity with minimal birefringence in the telecom wavelength range using continuous-wave (CW) laser light. Here, we investigate a 1-km NANF designed for wavelengths up to the 2-$\mu$m waveband. Our results show a polarization extinction ratio between ~-30 dB and ~-70 dB across the 1520 to 1620 nm range in CW operation, peaking at ~-60 dB at the 2-$\mu$m design wavelength. Our study also includes the pulsed regime, providing insights beyond previous CW studies, e.g., on the propagation of broadband quantum states of light in NANF at 2 $\mu$m, and corresponding extinction-ratio-limited quantum bit error rates (QBER) for prepare-measure and entanglement-based quantum key distribution (QKD) protocols. Our findings highlight the potential of these fibers in emerging applications such as QKD, pointing towards a new standard in optical quantum technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. C. H. Bennett and G. Brassard, “The dawn of a new era for quantum cryptography: The experimental prototype is working!” \JournalTitleACM SIGACT News 20, 78–80 (1989). Accessed: Sep. 29, 2023.
  2. G. Berlín, G. Brassard, F. Bussières, et al., “Experimental loss-tolerant quantum coin flipping,” \JournalTitleNat Commun 2 (2011).
  3. P. Schiansky et al., “Demonstration of quantum-digital payments,” \JournalTitleNat Commun 14 (2023).
  4. F. Gunning and B. Corbett, “Time to open the 2-µm window?” \JournalTitleOpt. Photonics New 30, 42–47 (2019).
  5. D. J. Richardson, “Filling the light pipe,” \JournalTitleScience 330, 327–328 (2010).
  6. H. Sakr et al., “Ultrawide bandwidth hollow core fiber for interband short reach data transmission,” in Optics InfoBase Conference Papers, (Optica Publishing Group (formerly OSA), 2019).
  7. Y. Hong et al., “Hollow-core nanf for high-speed short-reach transmission in the s+c+l-bands,” \JournalTitleJournal of Lightwave Technology 39, 6167–6174 (2021).
  8. D. G. Ouzounov et al., “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” \JournalTitleScience (1979) 301, 1702–1704 (2003).
  9. R. Yu, Y. Chen, L. Shui, and L. Xiao, “Hollow-core photonic crystal fiber gas sensing,” \JournalTitleSensors (Switzerland) 20 (2020).
  10. H. Sakr et al., “Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm,” \JournalTitleNat Commun 11 (2020).
  11. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” \JournalTitleOpt Express 22, 23807 (2014).
  12. A. Taranta et al., “Exceptional polarization purity in antiresonant hollow-core optical fibres,” \JournalTitleNat Photonics 14, 504–510 (2020).
  13. G. T. Jasion, T. D. Bradley, K. Harrington, et al., “Hollow core nanf with 0.28 db/km attenuation in the c and l bands,” in 2020 Optical Fiber Communications Conference and Exhibition (OFC), (2020), p. Th4B.4.
  14. M. Antesberger, C. Richter, F. Poletti, et al., “Distribution of telecom time-bin entangled photons through a 7.7 km hollow-core fiber,” \JournalTitlearXiv preprint arXiv:2308.01337 (2023).
  15. G. L. Mansell, T. G. McRae, P. A. Altin, et al., “Observation of squeezed light in the 2 μ𝜇\muitalic_μ m region,” \JournalTitlePhysical Review Letters 120, 203603 (2018).
  16. S. Prabhakar, T. Shields, A. C. Dada, et al., “Two-photon quantum interference and entanglement at 2.1⁢μ⁢m2.1𝜇m2.1\phantom{\rule{1.99997pt}{0.0pt}}\mu\mathrm{m}2.1 italic_μ roman_m,” \JournalTitleScience Advances 6, eaay5195 (2020).
  17. A. C. Dada, J. m. k. Kaniewski, C. Gawith, et al., “Near-maximal two-photon entanglement for optical quantum communication at 2.1⁢μ⁢m2.1𝜇m2.1\phantom{\rule{1.99997pt}{0.0pt}}\mu\mathrm{m}2.1 italic_μ roman_m,” \JournalTitlePhys. Rev. Appl. 16, L051005 (2021).
  18. D. Ganapathy, W. Jia, M. Nakano, et al., “Broadband quantum enhancement of the ligo detectors with frequency-dependent squeezing,” \JournalTitlePhys. Rev. X 13, 041021 (2023).
  19. L. M. Rosenfeld, D. A. Sulway, G. F. Sinclair, et al., “Mid-infrared quantum optics in silicon,” \JournalTitleOpt. Express 28, 37092–37102 (2020).
  20. W. Shen, G. Zhou, J. Du, et al., “High-speed silicon microring modulator at the 2μ𝜇\muitalic_μm waveband with analysis and observation of optical bistability,” \JournalTitlePhoton. Res. 10, A35–A42 (2022).
  21. V. Zuba, H. C. H. Mulvad, R. Slavík, et al., “Limits of coupling efficiency into hollow-core antiresonant fibres,” \JournalTitleJournal of Lightwave Technology 41, 6374–6382 (2023).
  22. Z. Liu, Y. Chen, Z. Li, et al., “High-capacity directly modulated optical transmitter for 2−μ2𝜇2-\mu2 - italic_μm spectral region,” \JournalTitleJournal of Lightwave Technology 33, 1373–1379 (2015).
  23. X. Zhang, W. Song, Z. Dong, et al., “Low loss nested hollow-core anti-resonant fiber at 2 µm spectral range,” \JournalTitleOpt. Lett. 47, 589–592 (2022).
  24. R. Stevens, “Polarisation extinction ratio-measurement requirements for optical communication systems.” \JournalTitleReports (2002).
  25. O. Sezerman and G. Best, “Accurate alignment preserves polarization,” \JournalTitleLaser Focus World 33, 27–30 (1997).
  26. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” \JournalTitleProceedings of IEEE International Conference on Computers, Systems and Signal Processing pp. 175–179 (1984). Available online: http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf.
  27. C. H. Bennett, F. Bessette, G. Brassard, et al., “Experimental quantum cryptography,” \JournalTitleJournal of Cryptology 5, 3–28 (1992).
  28. D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” \JournalTitleQuantum Information & Computation 4, 325–360 (2004).
  29. J. Yin, Y.-H. Li, S.-K. Liao, et al., “Entanglement-based secure quantum cryptography over 1,120 kilometres,” \JournalTitleNature 582, 501–505 (2020).
  30. M. Koashi and J. Preskill, “Secure quantum key distribution with an uncharacterized source,” \JournalTitlePhys. Rev. Lett. 90, 057902 (2003).
  31. A. T. Castillo and R. Donaldson, “Time-division technique for quantum optical receivers utilizing single-photon detector array technology and spatial-multiplexing,” \JournalTitleOpt. Express 30, 44365–44374 (2022).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.