Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The weighted and shifted seven-step BDF method for parabolic equations (2405.02872v1)

Published 5 May 2024 in math.NA and cs.NA

Abstract: Stability of the BDF methods of order up to five for parabolic equations can be established by the energy technique via Nevanlinna--Odeh multipliers. The nonexistence of Nevanlinna--Odeh multipliers makes the six-step BDF method special; however, the energy technique was recently extended by the authors in [Akrivis et al., SIAM J. Numer. Anal. \textbf{59} (2021) 2449--2472] and covers all six stable BDF methods. The seven-step BDF method is unstable for parabolic equations, since it is not even zero-stable. In this work, we construct and analyze a stable linear combination of two non zero-stable schemes, the seven-step BDF method and its shifted counterpart, referred to as WSBDF7 method. The stability regions of the WSBDF$q, q\leqslant 7$, with a weight $\vartheta\geqslant1$, increase as $\vartheta$ increases, are larger than the stability regions of the classical BDF$q,$ corresponding to $\vartheta=1$. We determine novel and suitable multipliers for the WSBDF7 method and establish stability for parabolic equations by the energy technique. The proposed approach is applicable for mean curvature flow, gradient flows, fractional equations and nonlinear equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. The energy technique for the six-step BDF method, SIAM J. Numer. Anal. 59 (2021) 2449–2472. DOI 10.1137/21M1392656. MR4316580
  2. Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation, Math. Comp. 90 (2021) 995–1038. DOI 10.1090/mcom/3597. MR4232216
  3. Backward difference formulae: New multipliers and stability properties for parabolic equations, Math. Comp. 85 (2016) 2195–2216. DOI 10.1090/mcom3055. MR3511279
  4. Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32 (1995) 797–823. DOI 10.1137/0732037. MR1335656
  5. On the equivalence of A-stability and G-stability, Appl. Numer. Math. 5 (1989) 19–22. DOI 10.1016/0168-9274(89)90020-2. Recent theoretical results in numerical ordinary differential equations. MR979543
  6. Weighted and shifted BDF3 methods on variable grids for a parabolic problem, arXiv:2112.13613v1
  7. Backward difference formulae: the energy technique for subdiffusion equation, J. Sci. Comput. 87 (2021), Paper No. 94. DOI 10.1007/s10915-021-01509-9. MR4257068
  8. M. Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980) 257–276 DOI 10.1007/BF01396412. MR592157
  9. G. Dahlquist, G-stability is equivalent to A-stability, BIT 18 (1978) 384–401. DOI 10.1007/BF01932018. MR520750
  10. Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces, Numer. Math. 151 (2022) 873–925. DOI 10.1007/s00211-022-01301-3. MR4453294
  11. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics v. 8, Springer–Verlag, Berlin, 2ndsuperscript2nd2^{\text{nd}}2 start_POSTSUPERSCRIPT nd end_POSTSUPERSCRIPT revised ed., 1993, corr. 2ndsuperscript2nd2^{\text{nd}}2 start_POSTSUPERSCRIPT nd end_POSTSUPERSCRIPT printing, 2000. DOI 10.1007/978-3-540-78862-1. MR1227985
  12. Solving ordinary differential equations II: stiff and differential-algebraic problems, volume 14 of Springer Series in Computational Mathematics. Springer–Verlag, Berlin, second rev. edition, 2010, pages xvi+614. DOI 10.1007/978-3-642-05221-7. MR2657217
  13. F. K. Huang and J. Shen, A new class of implicit-explicit BDFk SAV schemes for general dissipative systems and their error analysis, Comput. Methods Appl. Mech. Engrg. 392 (2022), Paper No. 114718. DOI 10.1016/j.cma.2022.114718. MR4383075
  14. B. Kovács and B. Y. Li, Maximal regularity of backward difference time discretization for evolving surface PDEs and its application to nonlinear problems, IMA J. Numer. Anal. 43 (2023) 1937–1969. DOI 10.1093/imanum/drac033. MR4621836
  15. A linear multistep method for solving stiff ordinary differential equations, J. of Tsinghua University 31 (1991) (in Chinese, with English abstract). DOI 10.16511/j.cnki.qhdxxb.1991.06.001
  16. Backward difference time discretization of parabolic differential equations on evolving surfaces, IMA J. Numer. Anal. 33 (2013) 1365–1385. DOI 10.1093/imanum/drs044. MR3119720
  17. Multiplier techniques for linear multistep methods, Numer. Funct. Anal. Optim. 3 (1981) 377–423. DOI 10.1080/01630568108816097. MR636736
  18. S. P. Nørsett, A criterion for A(α)𝛼(\alpha)( italic_α )-stability of linear multistep methods, BIT 9 (1969) 259–263. DOI 10.1007/bf01946817. MR0256571
  19. Spectral Methods: Algorithms, Analysis and Applications, Springer–Verlag, Berlin, 2011. DOI 10.1007/978-3-540-71041-7. MR1311481

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com