Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A higher dimensional Auslander-Iyama-Solberg correspondence (2405.02736v1)

Published 4 May 2024 in math.RT and math.RA

Abstract: In this paper, we prove a higher dimensional version of Auslander-Iyama-Solberg correspondence. Iyama and Solberg have shown a bijection between $n$-minimal Auslander-Gorenstein algebras and $n$-precluster tilting modules. If $A$ is an $n$-minimal Auslander-Gorenstein algebra, then the pair $(A,P)$ is a relative $(n+1)$-Auslander-Gorenstein pair in the sense of the authors, where $P$ is the minimal faithful projective-injective left $A$-module. We establish a higher dimensional Auslander-Iyama-Solberg, where $P$ is replaced by any self-orthogonal module $Q$ having finite projective and injective dimension. This new correspondence provides a bijection between relative Auslander--Gorenstein pairs and a new class of objects that generalise precluster tilting modules. This way, we obtain a new correspondence coming from the modular representation theory of general linear groups.

Summary

We haven't generated a summary for this paper yet.