Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Asynchronous Protocols for Entanglement Distribution in Quantum Networks (2405.02406v2)

Published 3 May 2024 in quant-ph and cs.NI

Abstract: The distribution of entanglement in quantum networks is typically approached under idealized assumptions such as perfect synchronization and centralized control, while classical communication is often neglected. However, these assumptions prove impractical in large-scale networks. In this paper, we present a pragmatic perspective by exploring two minimal asynchronous protocols: a parallel scheme generating entanglement independently at the link level, and a sequential scheme extending entanglement iteratively from one party to the other. Our analysis incorporates non-uniform repeater spacings and classical communications and accounts for quantum memory decoherence. We evaluate network performance using metrics such as entanglement bit rate, end-to-end fidelity, and secret key rate for entanglement-based quantum key distribution. Our findings suggest the sequential scheme's superiority due to comparable performance with the parallel scheme, coupled with simpler implementation. Additionally, we impose a cutoff strategy to improve performance by discarding attempts with prolonged memory idle time, effectively eliminating low-quality entanglement links. Finally, we apply our methods to the real-world topology of SURFnet and report the performance as a function of memory coherence time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” arXiv:2003.06557, 2020.
  2. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. Dynes et al., “The secoqc quantum key distribution network in vienna,” New Journal of Physics, vol. 11, no. 7, p. 075001, 2009.
  3. S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang et al., “Field and long-term demonstration of a wide area quantum key distribution network,” Optics express, vol. 22, no. 18, pp. 21 739–21 756, 2014.
  4. D. Stucki, M. Legre, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron et al., “Long-term performance of the swissquantum quantum key distribution network in a field environment,” New Journal of Physics, vol. 13, no. 12, p. 123001, 2011.
  5. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science, vol. 306, no. 5700, pp. 1330–1336, 2004.
  6. J. I. Cirac, A. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Physical Review A, vol. 59, no. 6, p. 4249, 1999.
  7. H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008.
  8. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
  9. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Physical Review Letters, vol. 81, no. 26, p. 5932, 1998.
  10. W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum repeaters,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 3, pp. 78–90, 2015.
  11. K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H.-K. Lo, and I. Tzitrin, “Quantum repeaters: From quantum networks to the quantum internet,” arXiv preprint arXiv:2212.10820, 2022.
  12. B. Jing, X.-J. Wang, Y. Yu, P.-F. Sun, Y. Jiang, S.-J. Yang, W.-H. Jiang, X.-Y. Luo, J. Zhang, X. Jiang et al., “Entanglement of three quantum memories via interference of three single photons,” Nature Photonics, vol. 13, no. 3, pp. 210–213, 2019.
  13. Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang, H. Liu, M.-Y. Zheng, X.-P. Xie et al., “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020.
  14. M. Pompili, S. L. Hermans, S. Baier, H. K. Beukers, P. C. Humphreys, R. N. Schouten, R. F. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse et al., “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021.
  15. S. Hermans, M. Pompili, H. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, no. 7911, pp. 663–668, 2022.
  16. T. van Leent, M. Bock, F. Fertig, R. Garthoff, S. Eppelt, Y. Zhou, P. Malik, M. Seubert, T. Bauer, W. Rosenfeld et al., “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022.
  17. C. M. Knaut et al., “Entanglement of nanophotonic quantum memory nodes in a telecommunication network,” arXiv preprint arXiv:2310.01316, 2023.
  18. S. Lloyd, J. H. Shapiro, F. N. Wong, P. Kumar, S. M. Shahriar, and H. P. Yuen, “Infrastructure for the quantum internet,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 5, pp. 9–20, 2004.
  19. A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho et al., “A link layer protocol for quantum networks,” in Proceedings of the ACM SIGCOMM, 2019, pp. 159–173.
  20. M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet,” npj Quantum Information, vol. 5, no. 1, pp. 1–9, 2019.
  21. C. Li, T. Li, Y.-X. Liu, and P. Cappellaro, “Effective routing design for remote entanglement generation on quantum networks,” npj Quantum Information, vol. 7, no. 1, p. 10, 2021.
  22. W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum network protocol,” in Proceedings of the 16th international conference on emerging networking experiments and technologies, 2020, pp. 1–16.
  23. M. Skrzypczyk and S. Wehner, “An architecture for meeting quality-of-service requirements in multi-user quantum networks,” arXiv preprint arXiv:2111.13124, 2021.
  24. L. Kamin, E. Shchukin, F. Schmidt, and P. van Loock, “Exact rate analysis for quantum repeaters with imperfect memories and entanglement swapping as soon as possible,” Phys. Rev. Res., vol. 5, p. 023086, May 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevResearch.5.023086
  25. Z. Yang, A. Ghubaish, R. Jain, H. Shapourian, and A. Shabani, “Asynchronous entanglement routing for the quantum internet,” AVS Quantum Science, vol. 6, no. 1, 2024.
  26. Z. Xiao, J. Li, K. Xue, Z. Li, N. Yu, Q. Sun, and J. Lu, “A connectionless entanglement distribution protocol design in quantum networks,” IEEE Network, 2023.
  27. L. Chen, K. Xue, J. Li, R. Li, N. Yu, Q. Sun, and J. Lu, “Q-ddca: Decentralized dynamic congestion avoid routing in large-scale quantum networks,” IEEE/ACM Transactions on Networking, 2023.
  28. Y. Wang, X. Yu, Y. Zhao, A. Nag, and J. Zhang, “Pre-established entanglement distribution algorithm in quantum networks,” Journal of Optical Communications and Networking, vol. 14, no. 12, pp. 1020–1033, 2022.
  29. G. Vardoyan and S. Wehner, “Quantum network utility maximization,” arXiv preprint arXiv:2210.08135, 2022.
  30. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, Aug 1991. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.67.661
  31. Z. Li, K. Xue, J. Li, N. Yu, D. S. Wei, and R. Li, “Connection-oriented and connectionless remote entanglement distribution strategies in quantum networks,” IEEE Network, vol. 36, no. 6, pp. 150–156, 2022.
  32. L. Aparicio and R. Van Meter, “Multiplexing schemes for quantum repeater networks,” in Quantum Communications and Quantum Imaging IX, vol. 8163.   SPIE, 2011, pp. 59–70.
  33. P. van Loock et al., “Extending quantum links: modules for fiber-and memory-based quantum repeaters,” Advanced quantum technologies, vol. 3, no. 11, p. 1900141, 2020.
  34. F. Rozpedek, K. Goodenough, J. Ribeiro, N. Kalb, V. C. Vivoli, A. Reiserer, R. Hanson, S. Wehner, and D. Elkouss, “Parameter regimes for a single sequential quantum repeater,” Quantum Science and Technology, vol. 3, no. 3, p. 034002, 2018.
  35. O. Collins, S. Jenkins, A. Kuzmich, and T. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Physical review letters, vol. 98, no. 6, p. 060502, 2007.
  36. E. Shchukin, F. Schmidt, and P. van Loock, “Waiting time in quantum repeaters with probabilistic entanglement swapping,” Physical Review A, vol. 100, no. 3, p. 032322, 2019.
  37. S. Pouryousef, H. Shapourian, A. Shabani, and D. Towsley, “Quantum network planning for utility maximization,” in Proceedings of the 1st Workshop on Quantum Networks and Distributed Quantum Computing, 2023, pp. 13–18.
  38. S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet topology zoo,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp. 1765–1775, 2011.
  39. J. Rabbie, K. Chakraborty, G. Avis, and S. Wehner, “Designing quantum networks using preexisting infrastructure,” npj Quantum Information, vol. 8, no. 1, p. 5, 2022.
  40. E. Shchukin and P. van Loock, “Optimal entanglement swapping in quantum repeaters,” Physical Review Letters, vol. 128, no. 15, p. 150502, 2022.
  41. S. Khatri, “Policies for elementary links in a quantum network,” Quantum, vol. 5, p. 537, 2021.
  42. S. Haldar, P. J. Barge, S. Khatri, and H. Lee, “Fast and reliable entanglement distribution with quantum repeaters: principles for improving protocols using reinforcement learning,” arXiv preprint arXiv:2303.00777, 2023.
  43. Á. G. Iñesta, G. Vardoyan, L. Scavuzzo, and S. Wehner, “Optimal entanglement distribution policies in homogeneous repeater chains with cutoffs,” npj Quantum Information, vol. 9, no. 1, p. 46, 2023.
  44. K. Goodenough, T. Coopmans, and D. Towsley, “On noise in swap asap repeater chains: exact analytics, distributions and tight approximations,” Bulletin of the American Physical Society, 2024.
  45. S. Shi and C. Qian, “Concurrent entanglement routing for quantum networks: Model and designs,” in Proceedings of the Annual conference of the ACM SIGCOMM, 2020, pp. 62–75.
Citations (1)

Summary

  • The paper introduces two minimal asynchronous protocols—sequential and parallel—to enhance entanglement distribution in noisy quantum networks.
  • It employs Monte Carlo and discrete-event simulations to assess performance metrics including ebit rate, end-to-end fidelity, and secret key rate under realistic conditions.
  • The study identifies optimal cutoff strategies and repeater placements to improve fidelity and robustness, offering practical insights for scalable quantum network design.

Analysis of Asynchronous Protocols for Entanglement Distribution in Quantum Networks

The paper "Analysis of Asynchronous Protocols for Entanglement Distribution in Quantum Networks" by Pouryousef, Shapourian, and Towsley focuses on practical, asynchronous approaches to entanglement distribution, diverging from idealized assumptions of perfect synchronization and centralized control typically considered in prior research. This investigation is essential due to the impracticalities of such assumptions in large-scale quantum networks.

Summary of Core Contributions

The main contributions of the paper are twofold:

  1. Asynchronous Protocols:
    • The authors propose two minimal asynchronous protocols: a sequential scheme and a parallel scheme.
    • The sequential scheme attempts entanglement generation iteratively from one party to another.
    • The parallel scheme attempts to generate entanglement at the link level independently across all links simultaneously.
  2. Performance Metrics:
    • The analysis incorporates various realistic factors such as non-uniform repeater spacings, classical communication delays, and quantum memory decoherence.
    • Performance is assessed using metrics such as entanglement bit rate, end-to-end fidelity, and secret key rate for entanglement-based quantum key distribution (QKD).

Detailed Analysis

Protocol Descriptions and Noise Models

The authors describe:

  • Sequential Protocol: Beginning with entanglement generation at the sender, progressing iteratively to the receiver.
  • Parallel Protocol: Attempts to establish entanglement across all links in a repeater chain simultaneously.

The focus on asynchronous, minimal hardware setups reflects the eventual goal of scalable quantum networks. They employ a simple noise model, considering photon loss, quantum memory decoherence, and imperfect entanglement generation. The use of geometric distributions to model the number of attempts until successful entanglement, along with depolarizing and dephasing channels, provides a robust framework for quantifying performance in realistic settings.

Empirical Evaluation

The authors leverage Monte Carlo simulations and discrete-event simulations to evaluate the performance of these protocols in various settings.

  1. Single Repeater Chain: They demonstrate that while the parallel protocol often outperforms the sequential protocol regarding ebit rate, the difference diminishes in more realistic setups where repeaters are not uniformly spaced. Notably, moving repeaters closer to the receiver can improve fidelity in the sequential protocol significantly due to reduced memory idle times.
  2. Cutoff Strategies: Introducing a cutoff strategy for quantum memory usage, they analyze its impact on SKR and ebit rates. Their findings show that while cutoffs help prevent low-fidelity entanglement links, significantly affecting SKR, optimizing cutoff times is critical for maximizing performance.
  3. Feasible Regions: They explore the feasibility of QKD under varying conditions by mapping out regions in the parameter space where QKD is achievable. They highlight the strong sensitivity of feasible regions to noise parameters, especially the depolarizing noise factor (µ), and show how cutoff strategies can shrink infeasible regions.
  4. Random Repeater Placement and Real-world Networks: The authors consider randomly placed repeaters and the performance on the SURFnet real-world topology. Their results indicate that while the parallel protocol generally performs better, the sequential protocol achieves comparable performance under more realistic network conditions where implementations could be simpler and more robust to non-deterministic factors.

Implications and Future Directions

  1. Practical Impact:
    • Distributed Routing: The adaptability of the sequential protocol to distributed routing without global network state information can lead to scalable, robust quantum networks.
    • Memory Considerations: The results emphasize the role of coherence times and the importance of optimizing memory usage, which could influence future repeater technology development.
  2. Extensions:
    • Entanglement Purification: Integrating entanglement purification protocols could mitigate errors due to noise, though at the cost of additional classical communication overhead.
    • Advanced Routing Protocols: Developing more sophisticated routing and congestion control protocols could further enhance performance in practical scenarios.

In conclusion, this paper provides a thorough and pragmatic analysis of asynchronous protocols for entanglement distribution, highlighting the nuanced trade-offs between different approaches. The detailed empirical results, especially the nuanced performance across various metrics, provide valuable insights for future research and practical implementation of quantum networks.

X Twitter Logo Streamline Icon: https://streamlinehq.com