Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Error-mitigated photonic quantum circuit Born machine (2405.02277v3)

Published 3 May 2024 in quant-ph

Abstract: In this article, we study quantum circuit Born machines (QCBMs) in the context of photonic quantum computing. QCBMs are a popular choice of quantum generative machine learning models, and we present a QCBM designed for linear optics. We show that a recently developed error mitigation technique called recycling mitigation greatly improves the training of QCBMs in realistic scenarios with photon loss, which is the primary source of noise in photonic systems. We demonstrate this through numerical simulations and through an experiment on a quantum photonic integrated processor. We expect our work to pave the way towards more demonstrations of error mitigation techniques tailored to photonic devices which can enhance the performance of a quantum algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. J. Preskill, Quantum 2, 79 (2018).
  2. E. Farhi and H. Neven, arXiv:1802.06002  (2018), arXiv:1802.06002 [quant-ph] .
  3. S. Lloyd and C. Weedbrook, Physical Review Letters 121 (2018), 10.1103/physrevlett.121.040502.
  4. P.-L. Dallaire-Demers and N. Killoran, Physical Review A 98 (2018), 10.1103/physreva.98.012324.
  5. N. Wiebe and L. Wossnig, arXiv:1905.09902  (2019), arXiv:1905.09902 [quant-ph] .
  6. J.-G. Liu and L. Wang, Physical Review A 98 (2018), 10.1103/physreva.98.062324.
  7. D. A. Lidar and T. A. Brun, Quantum error correction (Cambridge university press, 2013).
  8. J. Mills and R. Mezher, In preparation  (2024).
  9. S. Aaronson and A. Arkhipov, Proceedings of the forty-third annual ACM symposium on Theory of computing , 333 (2011).
  10. S. Shankar and D. Towsley, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer (2022).
  11. S. Kullback and R. A. Leibler, The Annals of Mathematical Statistics 22, 79 (1951).
  12. J. G. Vidal and D. O. Theis, “Calculus on parameterized quantum circuits,”  (2018), arXiv:1812.06323 [quant-ph] .
  13. G. de Felice and C. Cortlett, arXiv:2401.07997  (2024), arXiv:2401.07997 [quant-ph] .
  14. J. C. Spall, Johns Hopkins APL Technical Digest 19, 482 (1998).
  15. C. Zoufal, arXiv:2111.12738  (2021), arXiv:2111.12738 [quant-ph] .
  16. L. Gurvits, in Mathematical Foundations of Computer Science 2005, edited by J. Jedrzejowicz and A. Szepietowski (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005) pp. 447–458.
  17. S. Aaronson and T. Hance, arXiv:1212.0025  (2012), arXiv:1212.0025 [quant-ph] .
  18. W. Hoeffding, The collected works of Wassily Hoeffding (Springer Science & Business Media, 2012).
  19. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
  20. H. P. Nautrup and H. J. Briegel, arXiv:2312.13185  (2023), arXiv:2312.13185 [quant-ph] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com