Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The injectivity radius of the compact Stiefel manifold under the Euclidean metric (2405.02268v1)

Published 3 May 2024 in math.DG, cs.NA, and math.NA

Abstract: The injectivity radius of a manifold is an important quantity, both from a theoretical point of view and in terms of numerical applications. It is the largest possible radius within which all geodesics are unique and length-minimizing. In consequence, it is the largest possible radius within which calculations in Riemannian normal coordinates are well-defined. A matrix manifold that arises frequently in a wide range of practical applications is the compact Stiefel manifold of orthogonal $p$-frames in $\mathbb{R}n$. We observe that geodesics on this manifold are space curves of constant Frenet curvatures. Using this fact, we prove that the injectivity radius on the Stiefel manifold under the Euclidean metric is $\pi$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.