Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coding for Synthesis Defects (2405.02080v1)

Published 3 May 2024 in cs.IT and math.IT

Abstract: Motivated by DNA based data storage system, we investigate the errors that occur when synthesizing DNA strands in parallel, where each strand is appended one nucleotide at a time by the machine according to a template supersequence. If there is a cycle such that the machine fails, then the strands meant to be appended at this cycle will not be appended, and we refer to this as a synthesis defect. In this paper, we present two families of codes correcting synthesis defects, which are t-known-synthesis-defect correcting codes and t-synthesis-defect correcting codes. For the first one, it is assumed that the defective cycles are known, and each of the codeword is a quaternary sequence. We provide constructions for this family of codes for t = 1, 2, with redundancy log 4 and log n+18 log 3, respectively. For the second one, the codeword is a set of M ordered sequences, and we give constructions for t = 1, 2 to show a strategy for constructing this family of codes. Finally, we derive a lower bound on the redundancy for single-known-synthesis-defect correcting codes, which assures that our construction is almost optimal.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O. Milenkovic, “Dna-based storage: Trends and methods,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 3, pp. 230–248, 2015.
  2. I. Shomorony and R. Heckel, “Information-theoretic foundations of dna data storage,” Foundations and Trends® in Communications and Information Theory, vol. 19, no. 1, pp. 1–106, 2022.
  3. M. Yu, X. Tang, Z. Li, W. Wang, S. Wang, M. Li, Q. Yu, S. Xie, X. Zuo, and C. Chen, “High-throughput dna synthesis for data storage,” Chemical Society Reviews, 2024.
  4. L. Ceze, J. Nivala, and K. Strauss, “Molecular digital data storage using dna,” Nature Reviews Genetics, vol. 20, no. 8, pp. 456–466, 2019.
  5. A. Lenz, Y. Liu, C. Rashtchian, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding for efficient dna synthesis,” in 2020 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2020, pp. 2885–2890.
  6. A. Lenz, S. Melczer, C. Rashtchian, and P. H. Siegel, “Multivariate analytic combinatorics for cost constrained channels and subsequence enumeration,” arXiv preprint arXiv:2111.06105, 2021.
  7. K. Makarychev, M. Z. Rácz, C. Rashtchian, and S. Yekhanin, “Batch optimization for dna synthesis,” IEEE Transactions on Information Theory, vol. 68, no. 11, pp. 7454–7470, 2022.
  8. O. Elishco and W. Huleihel, “Optimal reference for dna synthesis,” IEEE Transactions on Information Theory, 2023.
  9. M. Abu-Sini, A. Lenz, and E. Yaakobi, “Dna synthesis using shortmers,” in 2023 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2023, pp. 585–590.
  10. J. Chrisnata and H. M. Kiah, “Deletion correcting codes for efficient dna synthesis,” in 2023 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2023, pp. 352–357.
  11. J. Lietard, A. Leger, Y. Erlich, N. Sadowski, W. Timp, and M. M. Somoza, “Chemical and photochemical error rates in light-directed synthesis of complex dna libraries,” Nucleic acids research, vol. 49, no. 12, pp. 6687–6701, 2021.
  12. C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes correcting a burst of deletions or insertions,” IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 1971–1985, 2017.
  13. G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion (corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5, pp. 766–769, 1984.
  14. V. Guruswami and J. Håstad, “Explicit two-deletion codes with redundancy matching the existential bound,” IEEE Transactions on Information Theory, vol. 67, no. 10, pp. 6384–6394, 2021.
  15. R. R. Varshamov and G. Tenenholtz, “A code for correcting a single asymmetric error,” Automatica i Telemekhanika, vol. 26, no. 2, pp. 288–292, 1965.
  16. S. Liu, I. Tjuawinata, and C. Xing, “Explicit construction of q-ary 2-deletion correcting codes with low redundancy,” IEEE Transactions on Information Theory, 2024.
  17. J. Chrisnata, H. M. Kiah, and E. Yaakobi, “Correcting deletions with multiple reads,” IEEE Transactions on Information Theory, vol. 68, no. 11, pp. 7141–7158, 2022.
  18. D. E. Knuth, “The sandwich theorem,” The Electronic Journal of Combinatorics, vol. 1, no. 1, 1994.
  19. J. Sima, N. Raviv, and J. Bruck, “Two deletion correcting codes from indicator vectors,” IEEE Transactions on Information Theory, vol. 66, no. 4, pp. 2375–2391, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com