Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Onboard Framework for Staircases Modeling Based on Point Clouds (2405.01918v1)

Published 3 May 2024 in cs.RO

Abstract: The detection of traversable regions on staircases and the physical modeling constitutes pivotal aspects of the mobility of legged robots. This paper presents an onboard framework tailored to the detection of traversable regions and the modeling of physical attributes of staircases by point cloud data. To mitigate the influence of illumination variations and the overfitting due to the dataset diversity, a series of data augmentations are introduced to enhance the training of the fundamental network. A curvature suppression cross-entropy(CSCE) loss is proposed to reduce the ambiguity of prediction on the boundary between traversable and non-traversable regions. Moreover, a measurement correction based on the pose estimation of stairs is introduced to calibrate the output of raw modeling that is influenced by tilted perspectives. Lastly, we collect a dataset pertaining to staircases and introduce new evaluation criteria. Through a series of rigorous experiments conducted on this dataset, we substantiate the superior accuracy and generalization capabilities of our proposed method. Codes, models, and datasets will be available at https://github.com/szturobotics/Stair-detection-and-modeling-project.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. S. Qi, W. Lin, Z. Hong, H. Chen, and W. Zhang, “Perceptive autonomous stair climbing for quadrupedal robots,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 2313–2320.
  2. Y. Cong, X. Li, J. Liu, and Y. Tang, “A stairway detection algorithm based on vision for ugv stair climbing,” in 2008 IEEE International Conference on Networking, Sensing and Control, 2008, pp. 1806–1811.
  3. S. Oßwald, J.-S. Gutmann, A. Hornung, and M. Bennewitz, “From 3d point clouds to climbing stairs: A comparison of plane segmentation approaches for humanoids,” in 2011 11th IEEE-RAS International Conference on Humanoid Robots.   IEEE, 2011, pp. 93–98.
  4. J. A. Delmerico, D. Baran, P. David, J. Ryde, and J. J. Corso, “Ascending stairway modeling from dense depth imagery for traversability analysis,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 2283–2290.
  5. T. Westfechtel, K. Ohno, B. Mertsching, R. Hamada, D. Nickchen, S. Kojima, and S. Tadokoro, “Robust stairway-detection and localization method for mobile robots using a graph-based model and competing initializations,” The International Journal of Robotics Research, vol. 37, no. 12, pp. 1463–1483, 2018.
  6. T. Westfechtel, K. Ohno, B. Mertsching, D. Nickchen, S. Kojima, and S. Tadokoro, “3d graph based stairway detection and localization for mobile robots,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 473–479.
  7. A. Pérez-Yus, G. López-Nicolás, and J. J. Guerrero, “Detection and modelling of staircases using a wearable depth sensor,” in Computer Vision-ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part III 13.   Springer, 2015, pp. 449–463.
  8. U. Patil, A. Gujarathi, A. Kulkarni, A. Jain, L. Malke, R. Tekade, K. Paigwar, and P. Chaturvedi, “Deep learning based stair detection and statistical image filtering for autonomous stair climbing,” in 2019 Third IEEE International Conference on Robotic Computing (IRC), 2019, pp. 159–166.
  9. S. Wang, H. Pan, C. Zhang, and Y. Tian, “Rgb-d image-based detection of stairs, pedestrian crosswalks and traffic signs,” Journal of Visual Communication and Image Representation, vol. 25, no. 2, pp. 263–272, 2014.
  10. Y. Li, L. Yang, and P. S.-P. Wang, “Real-time stair detection using multi-stage ground estimation based on kmeans and ransac,” in Trends and Applications in Information Systems and Technologies: Volume 1 9.   Springer, 2021, pp. 39–48.
  11. X. Qian and C. Ye, “Ncc-ransac: A fast plane extraction method for 3-d range data segmentation,” IEEE transactions on cybernetics, vol. 44, no. 12, pp. 2771–2783, 2014.
  12. P. Sriganesh, N. Bagree, B. Vundurthy, and M. Travers, “Fast staircase detection and estimation using 3d point clouds with multi-detection merging for heterogeneous robots,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 9253–9259.
  13. D. E. Diamantis, D.-C. C. Koutsiou, and D. K. Iakovidis, “Staircase detection using a lightweight look-behind fully convolutional neural network,” in Engineering Applications of Neural Networks.   Cham: Springer International Publishing, 2019, pp. 522–532.
  14. V. Prabakaran, A. V. Le, P. T. Kyaw, P. Kandasamy, A. Paing, and R. E. Mohan, “stetro-d: A deep learning based autonomous descending-stair cleaning robot,” Engineering Applications of Artificial Intelligence, vol. 120, p. 105844, 2023.
  15. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
  16. K. Lee, V. Kalyanram, C. Zhengl, S. Sane, and K. Lee, “Vision-based ascending staircase detection with interpretable classification model for stair climbing robots,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 6564–6570.
  17. J. Jayawardana, H. Dilshan, R. Wijethilaka, T. Balasooriya, U. Rajapaksha, S. Harshanath, and C. Jayawardena, “Train a robot to climb staircase using vision-base system,” in 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC).   IEEE, 2022, pp. 294–299.
  18. K. Zhang, J. Wang, and C. Fu, “Directional pointnet: 3d environmental classification for wearable robotics,” arXiv preprint arXiv:1903.06846, 2019.
  19. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660.
  20. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” in Advances in Neural Information Processing Systems, vol. 30.   Curran Associates, Inc., 2017.
  21. M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” in Readings in Computer Vision.   San Francisco (CA): Morgan Kaufmann, 1987, pp. 726–740.
  22. J. Shlens, “A tutorial on principal component analysis,” 2014.
  23. Q. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data processing,” CoRR, vol. abs/1801.09847, 2018.
  24. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” CoRR, vol. abs/1912.01703, 2019.
  25. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.