Feed-Forward Probabilistic Error Cancellation with Noisy Recovery Gates (2405.01833v2)
Abstract: Probabilistic Error Cancellation (PEC) aims to improve the accuracy of expectation values for observables. This is accomplished using the probabilistic insertion of recovery gates, which correspond to the inverse of errors. However, the inserted recovery gates also induce errors. Thus, it is difficult to obtain accurate expectation values with PEC since the estimator of PEC has a bias due to noise induced by recovery gates. To address this challenge, we propose an improved version of PEC that considers the noise resulting from gate insertion, called Feed-Forward PEC (FFPEC). FFPEC provides an unbiased estimator of expectation values by cancelling out the noise induced by recovery gates. We demonstrate that FFPEC yields more accurate expectation values compared to the conventional PEC method through analytical evaluations. Numerical experiments are used to evaluate analytical results.
- A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications, vol. 5, no. 1, p. 4213, Jul. 2014.
- D. A. Fedorov, B. Peng, N. Govind, and Y. Alexeev, “VQE method: A short survey and recent developments,” Materials Theory, vol. 6, no. 1, p. 2, Dec. 2022.
- E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm,” arXiv preprint arXiv:1411.4028, Nov. 2014.
- A. Bärtschi and S. Eidenbenz, “Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), Oct. 2020, pp. 72–82.
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018.
- K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-depth quantum circuits,” Physical Review Letters, vol. 119, no. 18, p. 180509, Nov. 2017.
- E. van den Berg, Z. K. Minev, and K. Temme, “Model-free readout-error mitigation for quantum expectation values,” Physical Review A, vol. 105, no. 3, p. 032620, Mar. 2022.
- E. van den Berg, Z. K. Minev, A. Kandala, and K. Temme, “Probabilistic error cancellation with sparse Pauli-Lindblad models on noisy quantum processors,” Nature Physics, vol. 19, no. 8, pp. 1116–1121, Aug. 2023.
- S. Endo, S. C. Benjamin, and Y. Li, “Practical Quantum Error Mitigation for Near-Future Applications,” Physical Review X, vol. 8, no. 3, p. 031027, Jul. 2018.
- R. Hicks, B. Kobrin, C. W. Bauer, and B. Nachman, “Active readout-error mitigation,” Physical Review A, vol. 105, no. 1, p. 012419, Jan. 2022.
- F. B. Maciejewski, Z. Zimborás, and M. Oszmaniec, “Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography,” Quantum, vol. 4, p. 257, Apr. 2020.
- S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay, and J. M. Gambetta, “Mitigating measurement errors in multi-qubit experiments,” Physical Review A, vol. 103, no. 4, p. 042605, Apr. 2021.
- Y. Guo and S. Yang, “Quantum Error Mitigation via Matrix Product Operators,” PRX Quantum, vol. 3, no. 4, p. 040313, Oct. 2022.
- R. S. Gupta, E. van den Berg, M. Takita, D. Riste, K. Temme, and A. Kandala, “Probabilistic error cancellation for dynamic quantum circuits,” arXiv:2310.07825, Dec. 2023.
- C. Kim, K. D. Park, and J.-K. Rhee, “Quantum Error Mitigation With Artificial Neural Network,” IEEE Access, vol. 8, pp. 188 853–188 860, 2020.
- B. Koczor, J. Morton, and S. Benjamin, “Probabilistic Interpolation of Quantum Rotation Angles,” Physical Review Letters, vol. 132, no. 13, p. 130602, Mar. 2024.
- R. Majumdar and C. J. Wood, “Error mitigated quantum circuit cutting,” arXiv:2211.13431, Nov. 2022.
- P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta, “Scalable mitigation of measurement errors on quantum computers,” PRX Quantum, vol. 2, no. 4, p. 040326, Nov. 2021.
- H.-C. Nguyen, “Information theoretic approach to readout error mitigation for quantum computers,” Physical Review A, vol. 108, no. 5, p. 052419, Nov. 2023.
- C. Piveteau, D. Sutter, and S. Woerner, “Quasiprobability decompositions with reduced sampling overhead,” npj Quantum Information, vol. 8, no. 1, pp. 1–9, Feb. 2022.
- R. Takagi, “Optimal resource cost for error mitigation,” Physical Review Research, vol. 3, no. 3, p. 033178, Aug. 2021.
- Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, “Quantum Error Mitigation,” Reviews of Modern Physics, vol. 95, no. 4, p. 045005, Dec. 2023.
- Y. Suzuki, S. Endo, K. Fujii, and Y. Tokunaga, “Quantum Error Mitigation as a Universal Error Reduction Technique: Applications from the NISQ to the Fault-Tolerant Quantum Computing Eras,” PRX Quantum, vol. 3, no. 1, p. 010345, Mar. 2022.
- Y. Guo and S. Yang, “Noise effects on purity and quantum entanglement in terms of physical implementability,” npj Quantum Information, vol. 9, no. 1, p. 11, Feb. 2023.
- Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023.