Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Approach to Systematic Data Acquisition and Data-Driven Simulation for the Safety Testing of Automated Driving Functions (2405.01776v1)

Published 2 May 2024 in cs.RO, cs.AI, cs.CV, cs.HC, and cs.LG

Abstract: With growing complexity and criticality of automated driving functions in road traffic and their operational design domains (ODD), there is increasing demand for covering significant proportions of development, validation, and verification in virtual environments and through simulation models. If, however, simulations are meant not only to augment real-world experiments, but to replace them, quantitative approaches are required that measure to what degree and under which preconditions simulation models adequately represent reality, and thus, using their results accordingly. Especially in R&D areas related to the safety impact of the "open world", there is a significant shortage of real-world data to parameterize and/or validate simulations - especially with respect to the behavior of human traffic participants, whom automated driving functions will meet in mixed traffic. We present an approach to systematically acquire data in public traffic by heterogeneous means, transform it into a unified representation, and use it to automatically parameterize traffic behavior models for use in data-driven virtual validation of automated driving functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. B. Schlag, “Automatisiertes Fahren im Straßenverkehr–Offene Fragen aus Sicht der Psychologie,” Zeitschrift für Verkehrssicherheit, vol. 2, no. 2016, pp. 94–98, 2016.
  2. W. König, “Nutzergerechte Entwicklung der Mensch-Maschine-Interaktion von Fahrerassistenzsystemen,” in Handbuch Fahrerassistenzsysteme.   Springer, 2015, pp. 621–632.
  3. N. T. S. B. (NTSB), “Collision between a Car Operating with Automated Vehicle Control Systems and a Tractor-Semitrailor Truck near Williston, Florida, 7 May 2016; NTSB/HAR-17/02-PB2017-102600,” Sept. 2017.
  4. N. Neis and J. Beyerer, “Literature review on maneuver-based scenario description for automated driving simulations,” in 2023 IEEE Intelligent Vehicles Symposium, 2023, pp. 1–8.
  5. J. Haselberger, M. Pelzer, B. Schick, and S. Müller, “JUPITER – ROS based Vehicle Platform for Autonomous Driving Research,” in 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE), 2022, pp. 1–8.
  6. Association for Standardization of Automation and Measuring Systems e.V. ASAM OpenDRIVE. [Online]. Available: https://www.asam.net/standards/detail/opendrive/
  7. PTV, “PTV Vissim and PTV Viswalk Help,” https://cgi.ptvgroup.com/vision-help/VISSIM_2023_ENG/Content/0_TitelCopyright/Index.htm, 2023, accessed: 2023-05-03.
  8. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learning, ser. Proceedings of Machine Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds., vol. 78.   PMLR, 13–15 Nov 2017, pp. 1–16. [Online]. Available: https://proceedings.mlr.press/v78/dosovitskiy17a.html
  9. L. Westhofen, C. Neurohr, T. Koopmann, M. Butz, B. Schütt, F. Utesch, B. Neurohr, C. Gutenkunst, and E. Böde, “Criticality metrics for automated driving: A review and suitability analysis of the state of the art,” Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 1–35, 2023.
  10. L. N. Peesapati, M. P. Hunter, and M. O. Rodgers, “Can post encroachment time substitute intersection characteristics in crash prediction models?” Journal of safety research, vol. 66, pp. 205–211, 2018.
  11. N. Neis and J. Beyerer, “A two-level stochastic model for the lateral movement of vehicles within their lane under homogeneous traffic conditions,” in 26th IEEE International Conference on Intelligent Transportation Systems ITSC 2023, 2023.
  12. A. Fries, F. Fahrenkrog, K. Donauer, M. Mai, and F. Raisch, “Driver behavior model for the safety assessment of automated driving,” in 2022 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2022, pp. 1669–1674.
  13. P. Bouchner, “Interactive driving simulators-history, design and their utilization in area of hmi research,” International journal of systems applications, engineering & development, vol. 10, no. 2016, pp. 179–188, 2016.
  14. J. Zhou, N. Wandelburg, and J. Beyerer, “Unknown-aware hierarchical object detection in the context of automated driving,” in 26th IEEE International Conference on Intelligent Transportation Systems ITSC 2023, 2023.
  15. K.-W. Chiang, H.-Y. Pai, J.-C. Zeng, M.-L. Tsai, and N. El-Sheimy, “Automated Modeling of Road Networks for High-Definition Maps in OpenDRIVE Format Using Mobile Mapping Measurements,” Geomatics, vol. 2, no. 2, pp. 221–235, June 2022. [Online]. Available: https://www.mdpi.com/2673-7418/2/2/13
  16. L. Eisemann and J. Maucher, “Automatic odometry-less opendrive generation from sparse point clouds,” in 26th IEEE International Conference on Intelligent Transportation Systems ITSC 2023, 2023.
  17. J. Han, J. Ding, N. Xue, and G.-S. Xia, “Redet: A rotation-equivariant detector for aerial object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 2786–2795.
  18. Y. Zhou, X. Yang, G. Zhang, J. Wang, Y. Liu, L. Hou, X. Jiang, X. Liu, J. Yan, C. Lyu, W. Zhang, and K. Chen, “Mmrotate: A rotated object detection benchmark using pytorch,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022.
  19. S. Waqas Zamir, A. Arora, A. Gupta, S. Khan, G. Sun, F. Shahbaz Khan, F. Zhu, L. Shao, G.-S. Xia, and X. Bai, “isaid: A large-scale dataset for instance segmentation in aerial images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 28–37.
  20. N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” in 2017 IEEE international conference on image processing (ICIP).   IEEE, 2017, pp. 3645–3649.
  21. P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, and H. Ling, “Detection and tracking meet drones challenge,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.
  22. D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang, Q. Huang, and Q. Tian, “The unmanned aerial vehicle benchmark: Object detection and tracking,” 2018.
  23. Z. Zhang, J. Zheng, H. Xu, X. Wang, X. Fan, and R. Chen, “Automatic background construction and object detection based on roadside lidar,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 10, pp. 4086–4097, 2020.
  24. C. Wang, Y. Wang, Y. Wang, C.-T. Wu, and G. Yu, “mussp: Efficient min-cost flow algorithm for multi-object tracking,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.   Curran Associates, Inc., 2019.
  25. PTV, “PTV Vissim and PTV Viswalk Help: Description Wiedemann99,” https://cgi.ptvgroup.com/vision-help/VISSIM_2023_ENG/Content/4_BasisdatenSim/FahrverhaltensparameterFolgeverh_Wied99.htm, 2023, accessed: 2023-05-03.
  26. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  27. F. Gao and L. Han, “Implementing the nelder-mead simplex algorithm with adaptive parameters,” Computational Optimization and Applications, vol. 51, pp. 259–277, 05 2012.
  28. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
  29. Epic Games, “Unreal engine.” [Online]. Available: https://www.unrealengine.com
  30. Y. Üzümcüoğlu, T. Özkan, C. Wu, and H. Zhang, “Traffic climate and driver behaviors: The moderating role of driving skills in turkey and china,” Journal of Safety Research, vol. 75, pp. 87–98, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022437520300931
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets