Large Language Models for UAVs: Current State and Pathways to the Future (2405.01745v1)
Abstract: Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like AI and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. LLMs, a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.
- X. Li and A. V. Savkin, “Networked unmanned aerial vehicles for surveillance and monitoring: A survey,” Future Internet, vol. 13, no. 7, p. 174, 2021.
- N. Thakur, P. Nagrath, R. Jain, D. Saini, N. Sharma, and D. J. Hemanth, “Artificial intelligence techniques in smart cities surveillance using uavs: A survey,” Machine Intelligence and Data Analytics for Sustainable Future Smart Cities, pp. 329–353, 2021.
- H. Ren, Y. Zhao, W. Xiao, and Z. Hu, “A review of uav monitoring in mining areas: Current status and future perspectives,” International Journal of Coal Science and Technology, vol. 6, pp. 320–333, 2019.
- D. Popescu, F. Stoican, G. Stamatescu, O. Chenaru, and L. Ichim, “A survey of collaborative uav–wsn systems for efficient monitoring,” Sensors, vol. 19, no. 21, p. 4690, 2019.
- R. A. Khalil, N. Saeed, and M. Almutiry, “UAVs-assisted passive source localization using robust TDOA ranging for search and rescue,” ICT Express, vol. 9, no. 4, pp. 677–682, 2023.
- S. Ullah, K.-I. Kim, K. H. Kim, M. Imran, P. Khan, E. Tovar, and F. Ali, “Uav-enabled healthcare architecture: Issues and challenges,” Future Generation Computer Systems, vol. 97, pp. 425–432, 2019.
- M. W. Akhtar and N. Saeed, “UAVs-Enabled maritime communications: UAVs-Enabled maritime communications: Opportunities and challenges,” IEEE Systems, Man, and Cybernetics Magazine, vol. 9, no. 3, pp. 2–8, 2023.
- M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on uavs for wireless networks: Applications, challenges, and open problems,” IEEE communications surveys and tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.
- S. P. H. Boroujeni, A. Razi, S. Khoshdel, F. Afghah, J. L. Coen, L. O’Neill, P. Fule, A. Watts, N.-M. T. Kokolakis, and K. G. Vamvoudakis, “A comprehensive survey of research towards ai-enabled unmanned aerial systems in pre-, active-, and post-wildfire management,” Information Fusion, p. 102369, 2024.
- A. Koubaa, A. Ammar, M. Abdelkader, Y. Alhabashi, and L. Ghouti, “Aero: Ai-enabled remote sensing observation with onboard edge computing in uavs,” Remote Sensing, vol. 15, no. 7, p. 1873, 2023.
- N. Cheng, S. Wu, X. Wang, Z. Yin, C. Li, W. Chen, and F. Chen, “Ai for uav-assisted iot applications: A comprehensive review,” IEEE Internet of Things Journal, 2023.
- S. Qazi, B. A. Khawaja, and Q. U. Farooq, “Iot-equipped and ai-enabled next generation smart agriculture: A critical review, current challenges and future trends,” Ieee Access, vol. 10, pp. 21 219–21 235, 2022.
- D. R. Vincent, N. Deepa, D. Elavarasan, K. Srinivasan, S. H. Chauhdary, and C. Iwendi, “Sensors driven ai-based agriculture recommendation model for assessing land suitability,” Sensors, vol. 19, no. 17, p. 3667, 2019.
- L. S. Iyer, “Ai enabled applications towards intelligent transportation,” Transportation Engineering, vol. 5, p. 100083, 2021.
- F. Al-Turjman and H. Zahmatkesh, “A comprehensive review on the use of ai in uav communications: Enabling technologies, applications, and challenges,” Unmanned Aerial Vehicles in Smart Cities, pp. 1–26, 2020.
- R. A. Khalil, Z. Safelnasr, N. Yemane, M. Kedir, A. Shafiqurrahman, and N. Saeed, “Advanced learning technologies for intelligent transportation systems: Prospects and challenges,” IEEE Open Journal of Vehicular Technology, vol. 5, pp. 397–427, 2024.
- M. Mohammadi and A. Al-Fuqaha, “Enabling cognitive smart cities using big data and machine learning: Approaches and challenges,” IEEE Communications Magazine, vol. 56, no. 2, pp. 94–101, 2018.
- J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2020, pp. 3505–3506.
- J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou, C. Gong, Y. Shen et al., “A comprehensive capability analysis of gpt-3 and gpt-3.5 series models,” arXiv preprint arXiv:2303.10420, 2023.
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
- A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshyvanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text transfer transformer to support code-related tasks,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 2021, pp. 336–347.
- G. Liu, N. Van Huynh, H. Du, D. T. Hoang, D. Niyato, K. Zhu, J. Kang, Z. Xiong, A. Jamalipour, and D. I. Kim, “Generative ai for unmanned vehicle swarms: Challenges, applications and opportunities,” arXiv preprint arXiv:2402.18062, 2024.
- A. Agapiou and V. Lysandrou, “Interacting with the artificial intelligence (ai) language model chatgpt: a synopsis of earth observation and remote sensing in archaeology,” Heritage, vol. 6, no. 5, pp. 4072–4085, 2023.
- H. Kurunathan, H. Huang, K. Li, W. Ni, and E. Hossain, “Machine learning-aided operations and communications of unmanned aerial vehicles: A contemporary survey,” IEEE Communications Surveys and Tutorials, 2023.
- B. Rong and H. Rutagemwa, “Leveraging large language models for intelligent control of 6g integrated tn-ntn with iot service,” IEEE Network, 2024.
- A. Ullah, G. Qi, S. Hussain, I. Ullah, and Z. Ali, “The role of llms in sustainable smart cities: Applications, challenges, and future directions,” arXiv preprint arXiv:2402.14596, 2024.
- S. Liu, H. Zhang, Y. Qi, P. Wang, Y. Zhang, and Q. Wu, “Aerialvln: Vision-and-language navigation for uavs,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 15 384–15 394.
- B. Piggott, S. Patil, G. Feng, I. Odat, R. Mukherjee, B. Dharmalingam, and A. Liu, “Net-gpt: A llm-empowered man-in-the-middle chatbot for unmanned aerial vehicle,” in 2023 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2023, pp. 287–293.
- I. De Zarzà, J. de Curtò, and C. T. Calafate, “Socratic video understanding on unmanned aerial vehicles,” Procedia Computer Science, vol. 225, pp. 144–154, 2023.
- G. Sun, W. Xie, D. Niyato, H. Du, J. Kang, J. Wu, S. Sun, and P. Zhang, “Generative ai for advanced uav networking,” arXiv preprint arXiv:2404.10556, 2024.
- W. J. Yun, B. Lim, S. Jung, Y.-C. Ko, J. Park, J. Kim, and M. Bennis, “Attention-based reinforcement learning for real-time uav semantic communication,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2021, pp. 1–6.
- A. Zhao, D. Huang, Q. Xu, M. Lin, Y.-J. Liu, and G. Huang, “Expel: Llm agents are experiential learners,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 17, 2024, pp. 19 632–19 642.
- E. Eigner and T. Händler, “Determinants of llm-assisted decision-making,” arXiv preprint arXiv:2402.17385, 2024.
- M. Jin, S. Wang, L. Ma, Z. Chu, J. Y. Zhang, X. Shi, P.-Y. Chen, Y. Liang, Y.-F. Li, S. Pan et al., “Time-llm: Time series forecasting by reprogramming large language models,” arXiv preprint arXiv:2310.01728, 2023.
- J. Zhu, S. Cai, F. Deng, and J. Wu, “Do llms understand visual anomalies? uncovering llm capabilities in zero-shot anomaly detection,” arXiv preprint arXiv:2404.09654, 2024.
- L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin et al., “A survey on large language model based autonomous agents,” Frontiers of Computer Science, vol. 18, no. 6, pp. 1–26, 2024.
- Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang, S. Jin, E. Zhou et al., “The rise and potential of large language model based agents: A survey,” arXiv preprint arXiv:2309.07864, 2023.
- Y. Wang, W. Zhong, L. Li, F. Mi, X. Zeng, W. Huang, L. Shang, X. Jiang, and Q. Liu, “Aligning large language models with human: A survey,” arXiv preprint arXiv:2307.12966, 2023.
- X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang, “A survey on model compression for large language models,” arXiv preprint arXiv:2308.07633, 2023.
- M. Gao, X. Hu, J. Ruan, X. Pu, and X. Wan, “Llm-based nlg evaluation: Current status and challenges,” arXiv preprint arXiv:2402.01383, 2024.
- J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and R. McHardy, “Challenges and applications of large language models,” arXiv preprint arXiv:2307.10169, 2023.
- L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, and M. Debbah, “Large generative ai models for telecom: The next big thing?” IEEE Communications Magazine, 2024.
- Y. Du, S. C. Liew, K. Chen, and Y. Shao, “The power of large language models for wireless communication system development: A case study on fpga platforms,” arXiv preprint arXiv:2307.07319, 2023.
- Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, and H. Wang, “Retrieval-augmented generation for large language models: A survey,” arXiv preprint arXiv:2312.10997, 2023.
- G. Mialon, R. Dessì, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu, B. Rozière, T. Schick, J. Dwivedi-Yu, A. Celikyilmaz et al., “Augmented language models: a survey,” arXiv preprint arXiv:2302.07842, 2023.
- S. Schwartz, A. Yaeli, and S. Shlomov, “Enhancing trust in llm-based ai automation agents: New considerations and future challenges,” arXiv preprint arXiv:2308.05391, 2023.
- S. Yin, C. Fu, S. Zhao, K. Li, X. Sun, T. Xu, and E. Chen, “A survey on multimodal large language models,” arXiv preprint arXiv:2306.13549, 2023.
- S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu, T. Zhang, F. Wu et al., “Instruction tuning for large language models: A survey,” arXiv preprint arXiv:2308.10792, 2023.
- J. Huang and K. C.-C. Chang, “Towards reasoning in large language models: A survey,” arXiv preprint arXiv:2212.10403, 2022.
- X. Liu, P. Xu, J. Wu, J. Yuan, Y. Yang, Y. Zhou, F. Liu, T. Guan, H. Wang, T. Yu et al., “Large language models and causal inference in collaboration: A comprehensive survey,” arXiv preprint arXiv:2403.09606, 2024.
- R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Exploring the limits of language modeling,” arXiv preprint arXiv:1602.02410, 2016.
- S. Zhang, C. Gong, L. Wu, X. Liu, and M. Zhou, “Automl-gpt: Automatic machine learning with gpt,” arXiv preprint arXiv:2305.02499, 2023.
- B. Peng, S. Narayanan, and C. Papadimitriou, “On limitations of the transformer architecture,” arXiv preprint arXiv:2402.08164, 2024.
- H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Barnes, and A. Mian, “A comprehensive overview of large language models,” arXiv preprint arXiv:2307.06435, 2023.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
- S. Alaparthi and M. Mishra, “Bidirectional encoder representations from transformers (bert): A sentiment analysis odyssey,” arXiv preprint arXiv:2007.01127, 2020.
- F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer,” in Proceedings of the 28th ACM international conference on information and knowledge management, 2019, pp. 1441–1450.
- Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu, H. Tian, and H. Wu, “Ernie: Enhanced representation through knowledge integration,” arXiv preprint arXiv:1904.09223, 2019.
- A. T. Rosário, “Generative ai and generative pre-trained transformer applications: Challenges and opportunities,” Making Art With Generative AI Tools, pp. 45–71, 2024.
- G. Yenduri, M. Ramalingam, G. C. Selvi, Y. Supriya, G. Srivastava, P. K. R. Maddikunta, G. D. Raj, R. H. Jhaveri, B. Prabadevi, W. Wang et al., “Gpt (generative pre-trained transformer)–a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions,” IEEE Access, 2024.
- R. Rodriguez-Torrealba, E. Garcia-Lopez, and A. Garcia-Cabot, “End-to-end generation of multiple-choice questions using text-to-text transfer transformer models,” Expert Systems with Applications, vol. 208, p. 118258, 2022.
- Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language understanding,” Advances in neural information processing systems, vol. 32, 2019.
- A. Sankar and R. Dhanalakshmi, “Comparative study of transformer models,” in Australasian Database Conference. Springer, 2022, pp. 193–200.
- J. De Curtò, I. De Zarzà, and C. T. Calafate, “Semantic scene understanding with large language models on unmanned aerial vehicles,” Drones, vol. 7, no. 2, p. 114, 2023.
- D. Oneață and H. Cucu, “Multimodal speech recognition for unmanned aerial vehicles,” Computers and Electrical Engineering, vol. 90, p. 106943, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045790620307904
- K. Choutri, M. Lagha, S. Meshoul, M. Batouche, Y. Kacel, and N. Mebarkia, “A multi-lingual speech recognition-based framework to human-drone interaction,” Electronics, vol. 11, no. 12, p. 1829, 2022.
- A. Tagliabue, K. Kondo, T. Zhao, M. Peterson, C. T. Tewari, and J. P. How, “Real: Resilience and adaptation using large language models on autonomous aerial robots,” arXiv preprint arXiv:2311.01403, 2023.
- J. Zhong, M. Li, Y. Chen, Z. Wei, F. Yang, and H. Shen, “A safer vision-based autonomous planning system for quadrotor uavs with dynamic obstacle trajectory prediction and its application with llms,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 920–929.
- I. Jawhar, N. Mohamed, J. Al-Jaroodi, D. P. Agrawal, and S. Zhang, “Communication and networking of uav-based systems: Classification and associated architectures,” Journal of Network and Computer Applications, vol. 84, pp. 93–108, 2017.
- M. Koroteev, “Bert: a review of applications in natural language processing and understanding,” arXiv preprint arXiv:2103.11943, 2021.
- M. Ehrmann, A. Hamdi, E. L. Pontes, M. Romanello, and A. Doucet, “Named entity recognition and classification in historical documents: A survey,” ACM Computing Surveys, vol. 56, no. 2, pp. 1–47, 2023.
- K. Hakala and S. Pyysalo, “Biomedical named entity recognition with multilingual bert,” in Proceedings of the 5th workshop on BioNLP open shared tasks, 2019, pp. 56–61.
- H. Xu, B. Liu, L. Shu, and P. S. Yu, “Bert post-training for review reading comprehension and aspect-based sentiment analysis,” arXiv preprint arXiv:1904.02232, 2019.
- S. Alaparthi and M. Mishra, “Bert: A sentiment analysis odyssey,” Journal of Marketing Analytics, vol. 9, no. 2, pp. 118–126, 2021.
- Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
- V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.
- Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite bert for self-supervised learning of language representations,” arXiv preprint arXiv:1909.11942, 2019.
- S. Luo, Y. Yao, H. Zhao, and L. Song, “A language model-based fine-grained address resolution framework in uav delivery system,” IEEE Journal of Selected Topics in Signal Processing, 2024.
- S. Silalahi, T. Ahmad, and H. Studiawan, “Named entity recognition for drone forensic using bert and distilbert,” in 2022 International Conference on Data Science and Its Applications (ICoDSA). IEEE, 2022, pp. 53–58.
- ——, “Transformer-based named entity recognition on drone flight logs to support forensic investigation,” IEEE Access, vol. 11, pp. 3257–3274, 2023.
- Y. Fan, B. Mi, Y. Sun, and L. Yin, “Research on the intelligent construction of uav knowledge graph based on attentive semantic representation,” Drones, vol. 7, no. 6, p. 360, 2023.
- A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
- A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.
- K. S. Kalyan, “A survey of gpt-3 family large language models including chatgpt and gpt-4,” Natural Language Processing Journal, p. 100048, 2023.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
- A. Hendy, M. Abdelrehim, A. Sharaf, V. Raunak, M. Gabr, H. Matsushita, Y. J. Kim, M. Afify, and H. H. Awadalla, “How good are gpt models at machine translation? a comprehensive evaluation,” arXiv preprint arXiv:2302.09210, 2023.
- J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
- M. L. TAZIR, M. MANCAS, and T. DUTOIT, “From words to flight: Integrating openai chatgpt with px4/gazebo for natural language-based drone control,” in International Workshop on Computer Science and Engineering, 2023.
- S. Wang, J. Chen, Z. Zhang, G. Wang, Y. Tan, and Y. Zheng, “Construction of a virtual reality platform for uav deep learning,” in 2017 Chinese Automation Congress (CAC). IEEE, 2017, pp. 3912–3916.
- S. Biswas, “Prospective role of chat gpt in the military: According to chatgpt,” Qeios, 2023.
- N. R. Choudhury, Y. Wen, and K. Chen, “Natural language navigation for robotic systems: Integrating gpt and dense captioning models with object detection in autonomous inspections,” in Construction Research Congress 2024, pp. 972–980.
- Y. Wang, Y. Pan, M. Yan, Z. Su, and T. H. Luan, “A survey on chatgpt: Ai-generated contents, challenges, and solutions,” IEEE Open Journal of the Computer Society, 2023.
- C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” Journal of machine learning research, vol. 21, no. 140, pp. 1–67, 2020.
- J. Ni, G. H. Abrego, N. Constant, J. Ma, K. B. Hall, D. Cer, and Y. Yang, “Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models,” arXiv preprint arXiv:2108.08877, 2021.
- A. Roberts, C. Raffel, K. Lee, M. Matena, N. Shazeer, P. J. Liu, S. Narang, W. Li, and Y. Zhou, “Exploring the limits of transfer learning with a unified text-to-text transformer,” Google, Tech. Rep., 2019.
- D. Cortiz, “Exploring transformers in emotion recognition: a comparison of bert, distillbert, roberta, xlnet and electra,” arXiv preprint arXiv:2104.02041, 2021.
- A. F. Adoma, N.-M. Henry, and W. Chen, “Comparative analyses of bert, roberta, distilbert, and xlnet for text-based emotion recognition,” in 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). IEEE, 2020, pp. 117–121.
- P. Rajapaksha, R. Farahbakhsh, and N. Crespi, “Bert, xlnet or roberta: the best transfer learning model to detect clickbaits,” IEEE Access, vol. 9, pp. 154 704–154 716, 2021.
- H. Li, J. Choi, S. Lee, and J. H. Ahn, “Comparing bert and xlnet from the perspective of computational characteristics,” in 2020 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2020, pp. 1–4.
- M. O. Topal, A. Bas, and I. van Heerden, “Exploring transformers in natural language generation: Gpt, bert, and xlnet,” arXiv preprint arXiv:2102.08036, 2021.
- D. Oneata and H. Cucu, “Kite: Automatic speech recognition for unmanned aerial vehicles,” arXiv preprint arXiv:1907.01195, 2019.
- L. Li, R. Yang, M. Lv, A. Wu, and Z. Zhao, “From behavior to natural language: Generative approach for unmanned aerial vehicle intent recognition,” IEEE Transactions on Artificial Intelligence, 2024.
- Y. Yao, S. Luo, H. Zhao, G. Deng, and L. Song, “Can llm substitute human labeling? a case study of fine-grained chinese address entity recognition dataset for uav delivery,” arXiv preprint arXiv:2403.06097, 2024.
- Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang, “Ernie 2.0: A continual pre-training framework for language understanding,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 05, 2020, pp. 8968–8975.
- Y. Sun, S. Wang, S. Feng, S. Ding, C. Pang, J. Shang, J. Liu, X. Chen, Y. Zhao, Y. Lu et al., “Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation,” arXiv preprint arXiv:2107.02137, 2021.
- D. Xiao, H. Zhang, Y. Li, Y. Sun, H. Tian, H. Wu, and H. Wang, “Ernie-gen: An enhanced multi-flow pre-training and fine-tuning framework for natural language generation,” arXiv preprint arXiv:2001.11314, 2020.
- F. Yu, J. Tang, W. Yin, Y. Sun, H. Tian, H. Wu, and H. Wang, “Ernie-vil: Knowledge enhanced vision-language representations through scene graphs,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 4, 2021, pp. 3208–3216.
- M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” arXiv preprint arXiv:1910.13461, 2019.
- K. Bhattacharjee, M. Ballesteros, R. Anubhai, S. Muresan, J. Ma, F. Ladhak, and Y. Al-Onaizan, “To bert or not to bert: Comparing task-specific and task-agnostic semi-supervised approaches for sequence tagging,” arXiv preprint arXiv:2010.14042, 2020.
- D. Van Ravenzwaaij, G. Dutilh, and E.-J. Wagenmakers, “Cognitive model decomposition of the bart: Assessment and application,” Journal of Mathematical Psychology, vol. 55, no. 1, pp. 94–105, 2011.
- Z. Wei, J. Zhu, Z. Guo, and F. Ning, “The performance analysis of spectrum sharing between uav enabled wireless mesh networks and ground networks,” IEEE Sensors Journal, vol. 21, no. 5, pp. 7034–7045, 2020.
- M. A. Jasim, H. Shakhatreh, N. Siasi, A. H. Sawalmeh, A. Aldalbahi, and A. Al-Fuqaha, “A survey on spectrum management for unmanned aerial vehicles (uavs),” IEEE Access, vol. 10, pp. 11 443–11 499, 2021.
- L. Wang, H. Yang, J. Long, K. Wu, and J. Chen, “Enabling ultra-dense uav-aided network with overlapped spectrum sharing: Potential and approaches,” IEEE Network, vol. 32, no. 5, pp. 85–91, 2018.
- A. Shamsoshoara, M. Khaledi, F. Afghah, A. Razi, and J. Ashdown, “Distributed cooperative spectrum sharing in uav networks using multi-agent reinforcement learning,” in 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2019, pp. 1–6.
- B. Shang, V. Marojevic, Y. Yi, A. S. Abdalla, and L. Liu, “Spectrum sharing for uav communications: Spatial spectrum sensing and open issues,” IEEE Vehicular Technology Magazine, vol. 15, no. 2, pp. 104–112, 2020.
- C. Zhang and W. Zhang, “Spectrum sharing for drone networks,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 1, pp. 136–144, 2016.
- Y. Lin, M. Wang, X. Zhou, G. Ding, and S. Mao, “Dynamic spectrum interaction of uav flight formation communication with priority: A deep reinforcement learning approach,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 3, pp. 892–903, 2020.
- M. Massaro, “Next generation of radio spectrum management: Licensed shared access for 5g,” Telecommunications Policy, vol. 41, no. 5-6, pp. 422–433, 2017.
- G. Santana, R. S. Cristo, C. Dezan, J.-P. Diguet, D. P. Osorio, and K. R. Branco, “Cognitive radio for uav communications: Opportunities and future challenges,” in 2018 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2018, pp. 760–768.
- L. Zhang, Y.-C. Liang, and M. Xiao, “Spectrum sharing for internet of things: A survey,” IEEE Wireless Communications, vol. 26, no. 3, pp. 132–139, 2018.
- S. Bayhan, A. Zubow, P. Gawłowicz, and A. Wolisz, “Smart contracts for spectrum sensing as a service,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 648–660, 2019.
- F. Shen, G. Ding, Z. Wang, and Q. Wu, “Uav-based 3d spectrum sensing in spectrum-heterogeneous networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 6, pp. 5711–5722, 2019.
- X. Liu, M. Guan, X. Zhang, and H. Ding, “Spectrum sensing optimization in an uav-based cognitive radio,” IEEE Access, vol. 6, pp. 44 002–44 009, 2018.
- Y. Huang, J. Xu, L. Qiu, and R. Zhang, “Cognitive uav communication via joint trajectory and power control,” in 2018 IEEE 19th international workshop on signal processing advances in wireless communications (SPAWC). IEEE, 2018, pp. 1–5.
- Y. Huang, W. Mei, J. Xu, L. Qiu, and R. Zhang, “Cognitive uav communication via joint maneuver and power control,” IEEE Transactions on Communications, vol. 67, no. 11, pp. 7872–7888, 2019.
- J. Chen, Y. Xu, Q. Wu, Y. Zhang, X. Chen, and N. Qi, “Interference-aware online distributed channel selection for multicluster fanet: A potential game approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3792–3804, 2019.
- W. Xu, S. Wang, S. Yan, and J. He, “An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1768–1780, 2018.
- J. Qiu, D. Grace, G. Ding, J. Yao, and Q. Wu, “Blockchain-based secure spectrum trading for unmanned-aerial-vehicle-assisted cellular networks: An operator’s perspective,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 451–466, 2019.
- Z. Hu, Z. Zheng, L. Song, T. Wang, and X. Li, “Uav offloading: Spectrum trading contract design for uav-assisted cellular networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 9, pp. 6093–6107, 2018.
- M. M. Azari, G. Geraci, A. Garcia-Rodriguez, and S. Pollin, “Uav-to-uav communications in cellular networks,” IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 6130–6144, 2020.
- A. Ghasemi and P. Guinand, “Accelerating radio spectrum regulation workflows with large language models (llms),” arXiv preprint arXiv:2403.17819, 2024.
- A. Kuwertz, D. Mühlenberg, J. Sander, and W. Müller, “Applying knowledge-based reasoning for information fusion in intelligence, surveillance, and reconnaissance,” in Multisensor Fusion and Integration in the Wake of Big Data, Deep Learning and Cyber Physical System: An Edition of the Selected Papers from the 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2017). Springer, 2018, pp. 119–139.
- W. Maharani, “Sentiment analysis during jakarta flood for emergency responses and situational awareness in disaster management using bert,” in 2020 8th International Conference on Information and Communication Technology (ICoICT). IEEE, 2020, pp. 1–5.
- V. G. Goecks and N. R. Waytowich, “Disasterresponsegpt: Large language models for accelerated plan of action development in disaster response scenarios,” arXiv preprint arXiv:2306.17271, 2023.
- M. Lee, L. Mesicek, K. Bae, and H. Ko, “Ai advisor platform for disaster response based on big data,” Concurrency and Computation: Practice and Experience, vol. 35, no. 16, p. e6215, 2023.
- R. She and Y. Ouyang, “Efficiency of uav-based last-mile delivery under congestion in low-altitude air,” Transportation Research Part C: Emerging Technologies, vol. 122, p. 102878, 2021.
- S. Asadzadeh, W. J. de Oliveira, and C. R. de Souza Filho, “Uav-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives,” Journal of Petroleum Science and Engineering, vol. 208, p. 109633, 2022.
- K. Nova, “Ai-enabled water management systems: an analysis of system components and interdependencies for water conservation,” Eigenpub Review of Science and Technology, vol. 7, no. 1, pp. 105–124, 2023.
- M. J. Mashala, T. Dube, B. T. Mudereri, K. K. Ayisi, and M. R. Ramudzuli, “A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments,” Remote Sensing, vol. 15, no. 16, p. 3926, 2023.
- K. S. Adu-Manu, C. Tapparello, W. Heinzelman, F. A. Katsriku, and J.-D. Abdulai, “Water quality monitoring using wireless sensor networks: Current trends and future research directions,” ACM Transactions on Sensor Networks (TOSN), vol. 13, no. 1, pp. 1–41, 2017.
- P. J. Stephenson, “Integrating remote sensing into wildlife monitoring for conservation,” Environmental Conservation, vol. 46, no. 3, pp. 181–183, 2019.
- M. Chanev, N. Dolapchiev, I. Kamenova, and L. Filchev, “Application of remote sensing methods for monitoring wild life populations: a review,” in Ninth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2023), vol. 12786. SPIE, 2023, pp. 731–737.
- F. Fourati and M.-S. Alouini, “Artificial intelligence for satellite communication: A review,” Intelligent and Converged Networks, vol. 2, no. 3, pp. 213–243, 2021.
- L. J. Wan, Y. Huang, Y. Li, H. Ye, J. Wang, X. Zhang, and D. Chen, “Invited paper: Software/hardware co-design for llm and its application for design verification,” in 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC), 2024, pp. 435–441.
- J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S. Zhong, B. Yin, and X. Hu, “Harnessing the power of llms in practice: A survey on chatgpt and beyond,” ACM Transactions on Knowledge Discovery from Data, 2023.
- S. Javaid, N. Saeed, Z. Qadir, H. Fahim, B. He, H. Song, and M. Bilal, “Communication and control in collaborative uavs: Recent advances and future trends,” IEEE Transactions on Intelligent Transportation Systems, 2023.
- X. Ma, G. Fang, and X. Wang, “Llm-pruner: On the structural pruning of large language models,” Advances in neural information processing systems, vol. 36, pp. 21 702–21 720, 2023.
- M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, S. Mao, and Z. Han, “Cached model-as-a-resource: Provisioning large language model agents for edge intelligence in space-air-ground integrated networks,” arXiv preprint arXiv:2403.05826, 2024.
- W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management for large language model serving with pagedattention,” in Proceedings of the 29th Symposium on Operating Systems Principles, 2023, pp. 611–626.
- H. Chen, J. Zhang, Y. Du, S. Xiang, Z. Yue, N. Zhang, Y. Cai, and Z. Zhang, “A comprehensive evaluation of fpga-based spatial acceleration of llms,” in Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2024, pp. 185–185.
- Y. Huang, “Leveraging large language models for enhanced nlp task performance through knowledge distillation and optimized training strategies,” arXiv preprint arXiv:2402.09282, 2024.
- S. S. Hassan, Y. M. Park, Y. K. Tun, W. Saad, Z. Han, and C. S. Hong, “Satellite-based its data offloading & computation in 6g networks: A cooperative multi-agent proximal policy optimization drl with attention approach,” IEEE Transactions on Mobile Computing, 2023.
- Q. Chen, Z. Guo, W. Meng, S. Han, C. Li, and T. Q. Quek, “A survey on resource management in joint communication and computing-embedded sagin,” arXiv preprint arXiv:2403.17400, 2024.
- K. Telli, O. Kraa, Y. Himeur, A. Ouamane, M. Boumehraz, S. Atalla, and W. Mansoor, “A comprehensive review of recent research trends on unmanned aerial vehicles (uavs),” Systems, vol. 11, no. 8, p. 400, 2023.
- S. Mishra and P. Palanisamy, “Autonomous advanced aerial mobility—an end-to-end autonomy framework for uavs and beyond,” IEEE Access, vol. 11, pp. 136 318–136 349, 2023.
- Z. Wang, J. Zhang, H. Du, R. Zhang, D. Niyato, B. Ai, and K. B. Letaief, “Generative ai agent for next-generation mimo design: Fundamentals, challenges, and vision,” arXiv preprint arXiv:2404.08878, 2024.
- Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on large language model (llm) security and privacy: The good, the bad, and the ugly,” High-Confidence Computing, p. 100211, 2024.
- F. Wu, N. Zhang, S. Jha, P. McDaniel, and C. Xiao, “A new era in llm security: Exploring security concerns in real-world llm-based systems,” arXiv preprint arXiv:2402.18649, 2024.
- Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li, L. Jiang, X. Zhang, and C. Wang, “Autogen: Enabling next-gen llm applications via multi-agent conversation framework,” arXiv preprint arXiv:2308.08155, 2023.
- N. Chacko and V. Chacko, “Paradigm shift presented by large language models (llm) in deep learning,” ADVANCES IN EMERGING COMPUTING TECHNOLOGIES, vol. 40, 2023.
- M. A. ElMossallamy, H. Zhang, L. Song, K. G. Seddik, Z. Han, and G. Y. Li, “Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 3, pp. 990–1002, 2020.
- K. Faisal and W. Choi, “Machine learning approaches for reconfigurable intelligent surfaces: A survey,” IEEE Access, vol. 10, pp. 27 343–27 367, 2022.
- X. Yuan, Y.-J. A. Zhang, Y. Shi, W. Yan, and H. Liu, “Reconfigurable-intelligent-surface empowered wireless communications: Challenges and opportunities,” IEEE wireless communications, vol. 28, no. 2, pp. 136–143, 2021.
- I. de Zarzà, J. de Curtò, G. Roig, and C. T. Calafate, “Llm adaptive pid control for b5g truck platooning systems,” Sensors, vol. 23, no. 13, p. 5899, 2023.
- R. Ali, Y. B. Zikria, A. K. Bashir, S. Garg, and H. S. Kim, “Urllc for 5g and beyond: Requirements, enabling incumbent technologies and network intelligence,” IEEE Access, vol. 9, pp. 67 064–67 095, 2021.
- Y. Hong, J. Wu, and R. Morello, “Llm-twin: Mini-giant model-driven beyond 5g digital twin networking framework with semantic secure communication and computation,” arXiv preprint arXiv:2312.10631, 2023.
- Z. Lin, G. Qu, Q. Chen, X. Chen, Z. Chen, and K. Huang, “Pushing large language models to the 6g edge: Vision, challenges, and opportunities,” arXiv preprint arXiv:2309.16739, 2023.
- Z. Liang, J. Cheng, R. Yang, H. Ren, Z. Song, D. Wu, X. Qian, T. Li, and Y. Shi, “Unleashing the potential of llms for quantum computing: A study in quantum architecture design,” arXiv preprint arXiv:2307.08191, 2023.
- J. Zhu, A. Pande, P. Mohapatra, and J. J. Han, “Using deep learning for energy expenditure estimation with wearable sensors,” in 2015 17th International Conference on E-health Networking, Application & Services (HealthCom). IEEE, 2015, pp. 501–506.
- Y. Xia, M. Shenoy, N. Jazdi, and M. Weyrich, “Towards autonomous system: flexible modular production system enhanced with large language model agents,” in 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2023, pp. 1–8.
- H. Xu, L. Han, Q. Yang, M. Li, and M. Srivastava, “Penetrative ai: Making llms comprehend the physical world,” in Proceedings of the 25th International Workshop on Mobile Computing Systems and Applications, 2024, pp. 1–7.
- N. Formosa, M. Quddus, S. Ison, M. Abdel-Aty, and J. Yuan, “Predicting real-time traffic conflicts using deep learning,” Accident Analysis & Prevention, vol. 136, p. 105429, 2020.
- L. Shi, B. Li, C. Kim, P. Kellnhofer, and W. Matusik, “Towards real-time photorealistic 3d holography with deep neural networks,” Nature, vol. 591, no. 7849, pp. 234–239, 2021.
- J. A. Srar, K.-S. Chung, and A. Mansour, “Adaptive array beamforming using a combined lms-lms algorithm,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 11, pp. 3545–3557, 2010.
- L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, and M. Debbah, “Large language models for telecom: The next big thing?” arXiv preprint arXiv:2306.10249, 2023.
- W. Y. B. Lim, S. Garg, Z. Xiong, Y. Zhang, D. Niyato, C. Leung, and C. Miao, “Uav-assisted communication efficient federated learning in the era of the artificial intelligence of things,” IEEE Network, vol. 35, no. 5, pp. 188–195, 2021.