Orbital perturbation coupling of primary oblateness and solar radiation pressure (2405.01669v1)
Abstract: Solar radiation pressure can have a substantial long-term effect on the orbits of high area-to-mass ratio spacecraft, such as solar sails. We present a study of the coupling between radiation pressure and the gravitational perturbation due to polar flattening. Removing the short-period terms via perturbation theory yields a time-dependent two-degree-of-freedom Hamiltonian, depending on one physical and one dynamical parameter. While the reduced model is non-integrable in general, assuming coplanar orbits (i.e., both Spacecraft and Sun on the equator) results in an integrable invariant manifold. We discuss the qualitative features of the coplanar dynamics, and find three regions of the parameters space characterized by different regimes of the reduced flow. For each regime, we identify the fixed points and their character. The fixed points represent frozen orbits, configurations for which the long-term perturbations cancel out to the order of the theory. They are advantageous from the point of view of station keeping, allowing the orbit to be maintained with minimal propellant consumption. We complement existing studies of the coplanar dynamics with a more rigorous treatment, deriving the generating function of the canonical transformation that underpins the use of averaged equations. Furthermore, we obtain an analytical expression for the bifurcation lines that separate the regions with different qualitative flow.
- Aksnes, K.: Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celestial Mechanics 13, 89–104 (1976). DOI 10.1007/BF01228536
- Celestial Mechanics and Dynamical Astronomy 131(9), 43 (2019). DOI 10.1007/s10569-019-9919-z
- Springer-Verlag, New York (1989). DOI 10.1007/978-1-4757-2063-1
- Astronomy and Astrophysics Library. Springer-Verlag, Berlin Heidelberg New York (2002)
- Celestial Mechanics 2, 253–264 (1970). DOI 10.1007/BF01229499
- Brouwer, D.: Solution of the problem of artificial satellite theory without drag. The Astronomical Journal 64, 378–397 (1959). DOI 10.1086/107958
- Brouwer, D.: Analytical study of resonance caused by solar radiation pressure. In: M. Roy (ed.) Dynamics of Satellites / Dynamique des Satellites, IUTAM Symposia (International Union of Theoretical and Applied Mechanics), pp. 34–39. Springer, Berlin, Heidelberg (1963). DOI 10.1007/978-3-642-48130-7˙4
- Icarus 40(1), 1–48 (1979). DOI 10.1016/0019-1035(79)90050-2
- Cain, B.J.: Determination of mean elements for Brouwer’s satellite theory. Astronomical Journal 67, 391–392 (1962). DOI 10.1086/108745
- Icarus 106, 419–427 (1993). DOI 10.1006/icar.1993.1182
- Journal of Guidance, Control and Dynamics 5(4), 366–371 (1982). DOI 10.2514/3.56183
- Celestial Mechanics 39(4), 365–406 (1986). DOI 10.1007/BF01230483
- Acta Astronautica 81(1), 137–150 (2012). DOI https://doi.org/10.1016/j.actaastro.2012.07.009
- Cook, G.E.: Luni-Solar Perturbations of the Orbit of an Earth Satellite. Geophysical Journal 6, 271–291 (1962). DOI 10.1111/j.1365-246X.1962.tb00351.x
- Celestial Mechanics 31(4), 401–429 (1983). DOI 10.1007/BF01230294
- Danby, J.M.A.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond, VA (1992)
- Deprit, A.: Canonical transformations depending on a small parameter. Celestial Mechanics 1(1), 12–30 (1969). DOI 10.1007/BF01230629
- Deprit, A.: The elimination of the parallax in satellite theory. Celestial Mechanics 24(2), 111–153 (1981). DOI 10.1007/BF01229192
- Deprit, A.: The reduction to the rotation for planar perturbed Keplerian systems. Celestial Mechanics 29, 229–247 (1983). DOI 10.1007/BF01229137
- Deprit, A.: Dynamics of orbiting dust under radiation pressure. In: A. Berger (ed.) The Big-Bang and Georges Lemaître, pp. 151–180. Springer, Dordrecht (1984). DOI 10.1007/978-94-009-6487-7˙14
- Celestial Mechanics 2(2), 166–206 (1970). DOI 10.1007/BF01229494
- Nonlinear Dynamics 107(2), 1529–1544 (2022). DOI 10.1007/s11071-021-06412-4
- Communications in Nonlinear Science and Numerical Simulations 76, 71–91 (2019). DOI 10.1016/j.cnsns.2019.02.011
- Ferraz Mello, S.: Analytical Study of the Earth’s Shadowing Effects on Satellite Orbits. Celestial Mechanics 5, 80–101 (1972). DOI 10.1007/BF01227825
- Springer, New York (2007)
- The Astronomical Journal 139(5), 1899–1908 (2010). DOI 10.1088/0004-6256/139/5/1899
- International Journal of Bifurcation and Chaos 08(6), 1215–1229 (1998). DOI 10.1142/s0218127498000954
- Celestial Mechanics 17, 267–280 (1978). DOI 10.1007/BF01232832
- Celestial Mechanics and Dynamical Astronomy 132(11), 55 (2020). DOI 10.1007/s10569-020-09992-2
- Icarus 101(2), 244–264 (1993). DOI 10.1006/icar.1993.1022
- Icarus 123(2), 503–523 (1996). DOI 10.1006/icar.1996.0175
- Astrodynamics 3(3), 231–246 (2019). DOI 10.1007/s42064-019-0061-1
- Henrard, J.: On a perturbation theory using Lie transforms. Celestial Mechanics 3, 107–120 (1970). DOI 10.1007/BF01230436
- Hori, G.i.: Theory of General Perturbation with Unspecified Canonical Variables. Publications of the Astronomical Society of Japan 18(4), 287–296 (1966)
- Hughes, S.: Satellite orbits perturbed by direct solar radiation pressure - General expansion of the disturbing function. Planetary and Space Science 25, 809–815 (1977). DOI 10.1016/0032-0633(77)90034-4
- Journal of Geophysical Research 65, 3512 (1960). DOI 10.1029/JZ065i010p03512
- American Journal of Physics 68(10), 907–919 (2000). DOI 10.1119/1.1285895
- Kamel, A.A.: Perturbation Method in the Theory of Nonlinear Oscillations. Celestial Mechanics 3, 90–106 (1970). DOI 10.1007/BF01230435
- Kaula, W.M.: Development of the lunar and solar disturbing functions for a close satellite. The Astronomical Journal 67, 300–303 (1962). DOI 10.1086/108729
- Kelly, T.S.: A note on first-order normalizations of perturbed Keplerian systems. Celestial Mechanics and Dynamical Astronomy 46, 19–25 (1989). DOI 10.1007/BF02426708
- Geophysical Research Letters 38(1), L01706 (2011). DOI 10.1029/2010GL045777
- Kozai, Y.: Effects of Solar Radiation Pressure on the Motion of an Artificial Satellite. SAO Special Report 56, 25–34 (1961)
- Kozai, Y.: Mean values of cosine functions in elliptic motion. The Astronomical Journal 67, 311–312 (1962). DOI 10.1086/108731
- Kozai, Y.: Second-order solution of artificial satellite theory without air drag. The Astronomical Journal 67, 446–461 (1962). DOI 10.1086/108753
- Astronomy and Astrophysics 318, 308–314 (1997)
- Earth, Planets and Space 51, 979–986 (1999). DOI 10.1186/BF03351568
- Kummer, M.: On resonant non linearly coupled oscillators with two equal frequencies. Communications in Mathematical Physics 48, 53–79 (1976). DOI 10.1007/BF01609411. Erratum: Communications in Mathematical Physics 60, 192 (1978).
- Lara, M.: A Hopf variables view on the libration points dynamics. Celestial Mechanics and Dynamical Astronomy 129(3), 285–306 (2017). DOI 10.1007/s10569-017-9778-4
- Lara, M.: Solution to the main problem of the artificial satellite by reverse normalization. Nonlinear Dynamics 101(2), 1501–1524 (2020). DOI 10.1007/s11071-020-05857-3
- Lara, M.: Brouwer’s satellite solution redux. Celestial Mechanics and Dynamical Astronomy 133(47), 1–20 (2021). DOI 10.1007/s10569-021-10043-7
- De Gruyter, Berlin/Boston (2021). DOI 10.1515/9783110668513-006
- In: W. Lacarbonara (ed.) Advances in Nonlinear Dynamics, Volume I, no. 12 in NODYCON Conference Proceedings. Springer Nature, Switzerland (2024). DOI 10.1007/978-3-031-50631-4˙12. URL https://doi.org/10.1007/978-3-031-50631-4˙12
- Nonlinear Dynamics 111, 9377–9393 (2023). DOI 10.1007/s11071-023-08325-w
- Communications in Nonlinear Science and Numerical Simulations 59, 612–628 (2018). DOI 10.1016/j.cnsns.2017.12.007
- Astronomy and Astrophysics 634(Article A61), 1–9 (2020). DOI 10.1051/0004-6361/201937106
- Lumme, K.: On the Formation of Saturn’s Rings. Astrophysics and Space Science 15(3), 404–414 (1972). DOI 10.1007/BF00649769
- Astronomical Journal 67, 176–177 (1962). DOI 10.1086/108689
- International Journal of Bifurcation and Chaos 26, 1630011-1562 (2016). DOI 10.1142/S0218127416300111
- Acta Astronautica 203, 551–567 (2023). DOI 10.1016/j.actaastro.2022.12.008
- Astronomy and Planetary Sciences. Springer, London (UK) (1999)
- In: H. Doebner, J. Hennig (eds.) Proceedings of the XVth International Conference on Differential Geometric Methods in Theoretical Physics (Clausthal-Zellerfeld, Germany, 1986), pp. 403–414. World Scientific, Singapore (1987)
- Mignard, F.: Radiation pressure and dust particle dynamics. Icarus 49(3), 347–366 (1982). DOI 10.1016/0019-1035(82)90041-0
- Celestial Mechanics 33(3), 239–250 (1984). DOI 10.1007/BF01230506
- Adam Hilger Ltd., Bristol, UK (1987)
- Physics and Astronomy. Springer-Verlag, Berlin, Heidelberg, New York (2001)
- Musen, P.: The Influence of the Solar Radiation Pressure on the Motion of an Artificial Satellite. Journal of Geophysical Research 65, 1391–1396 (1960). DOI 10.1029/JZ065i005p01391
- Science 131, 935–936 (1960). DOI 10.1126/science.131.3404.935
- Nayfeh, A.H.: Perturbation Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2004)
- Astrophysics and Space Science 362, 215 (2017). DOI 10.1007/s10509-017-3195-8
- Science 131(3404), 920–921 (1960). DOI 10.1126/science.131.3404.920
- Peale, S.J.: Dust belt of the Earth. Journal of Geophysical Research 71(3), 911–933 (1966). DOI 10.1029/JZ071i003p00911
- Monthly Notices of the Royal Astronomical Society 65, 229–238 (1905). DOI 10.1093/mnras/65.3.229
- Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Tome 2. Gauthier-Villars et fils (Paris) (1893). URL http://hdl.handle.net/1908/3852
- The Planetary Science Journal 4(2), 33 (2023). DOI 10.3847/PSJ/acb52e
- Robertson, H.P.: Dynamical Effects of Radiation in the Solar System. Monthly Notices of the Royal Astronomical Society 97, 423–437 (1937). DOI 10.1093/mnras/97.6.423
- Acta Astronautica 217, 181–187 (2024). DOI 10.1016/j.actaastro.2024.01.018
- Science 132, 1484–1486 (1960). DOI 10.1126/science.132.3438.1484
- Walter, H.G.: Conversion of osculating orbital elements into mean elements. Astronomical Journal 72, 994–997 (1967). DOI 10.1086/110374
- SAO Special Report 61 (1961)