Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orbital perturbation coupling of primary oblateness and solar radiation pressure (2405.01669v1)

Published 2 May 2024 in astro-ph.EP and math.DS

Abstract: Solar radiation pressure can have a substantial long-term effect on the orbits of high area-to-mass ratio spacecraft, such as solar sails. We present a study of the coupling between radiation pressure and the gravitational perturbation due to polar flattening. Removing the short-period terms via perturbation theory yields a time-dependent two-degree-of-freedom Hamiltonian, depending on one physical and one dynamical parameter. While the reduced model is non-integrable in general, assuming coplanar orbits (i.e., both Spacecraft and Sun on the equator) results in an integrable invariant manifold. We discuss the qualitative features of the coplanar dynamics, and find three regions of the parameters space characterized by different regimes of the reduced flow. For each regime, we identify the fixed points and their character. The fixed points represent frozen orbits, configurations for which the long-term perturbations cancel out to the order of the theory. They are advantageous from the point of view of station keeping, allowing the orbit to be maintained with minimal propellant consumption. We complement existing studies of the coplanar dynamics with a more rigorous treatment, deriving the generating function of the canonical transformation that underpins the use of averaged equations. Furthermore, we obtain an analytical expression for the bifurcation lines that separate the regions with different qualitative flow.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (79)
  1. Aksnes, K.: Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celestial Mechanics 13, 89–104 (1976). DOI 10.1007/BF01228536
  2. Celestial Mechanics and Dynamical Astronomy 131(9), 43 (2019). DOI 10.1007/s10569-019-9919-z
  3. Springer-Verlag, New York (1989). DOI 10.1007/978-1-4757-2063-1
  4. Astronomy and Astrophysics Library. Springer-Verlag, Berlin Heidelberg New York (2002)
  5. Celestial Mechanics 2, 253–264 (1970). DOI 10.1007/BF01229499
  6. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. The Astronomical Journal 64, 378–397 (1959). DOI 10.1086/107958
  7. Brouwer, D.: Analytical study of resonance caused by solar radiation pressure. In: M. Roy (ed.) Dynamics of Satellites / Dynamique des Satellites, IUTAM Symposia (International Union of Theoretical and Applied Mechanics), pp. 34–39. Springer, Berlin, Heidelberg (1963). DOI 10.1007/978-3-642-48130-7˙4
  8. Icarus 40(1), 1–48 (1979). DOI 10.1016/0019-1035(79)90050-2
  9. Cain, B.J.: Determination of mean elements for Brouwer’s satellite theory. Astronomical Journal 67, 391–392 (1962). DOI 10.1086/108745
  10. Icarus 106, 419–427 (1993). DOI 10.1006/icar.1993.1182
  11. Journal of Guidance, Control and Dynamics 5(4), 366–371 (1982). DOI 10.2514/3.56183
  12. Celestial Mechanics 39(4), 365–406 (1986). DOI 10.1007/BF01230483
  13. Acta Astronautica 81(1), 137–150 (2012). DOI https://doi.org/10.1016/j.actaastro.2012.07.009
  14. Cook, G.E.: Luni-Solar Perturbations of the Orbit of an Earth Satellite. Geophysical Journal 6, 271–291 (1962). DOI 10.1111/j.1365-246X.1962.tb00351.x
  15. Celestial Mechanics 31(4), 401–429 (1983). DOI 10.1007/BF01230294
  16. Danby, J.M.A.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond, VA (1992)
  17. Deprit, A.: Canonical transformations depending on a small parameter. Celestial Mechanics 1(1), 12–30 (1969). DOI 10.1007/BF01230629
  18. Deprit, A.: The elimination of the parallax in satellite theory. Celestial Mechanics 24(2), 111–153 (1981). DOI 10.1007/BF01229192
  19. Deprit, A.: The reduction to the rotation for planar perturbed Keplerian systems. Celestial Mechanics 29, 229–247 (1983). DOI 10.1007/BF01229137
  20. Deprit, A.: Dynamics of orbiting dust under radiation pressure. In: A. Berger (ed.) The Big-Bang and Georges Lemaître, pp. 151–180. Springer, Dordrecht (1984). DOI 10.1007/978-94-009-6487-7˙14
  21. Celestial Mechanics 2(2), 166–206 (1970). DOI 10.1007/BF01229494
  22. Nonlinear Dynamics 107(2), 1529–1544 (2022). DOI 10.1007/s11071-021-06412-4
  23. Communications in Nonlinear Science and Numerical Simulations 76, 71–91 (2019). DOI 10.1016/j.cnsns.2019.02.011
  24. Ferraz Mello, S.: Analytical Study of the Earth’s Shadowing Effects on Satellite Orbits. Celestial Mechanics 5, 80–101 (1972). DOI 10.1007/BF01227825
  25. Springer, New York (2007)
  26. The Astronomical Journal 139(5), 1899–1908 (2010). DOI 10.1088/0004-6256/139/5/1899
  27. International Journal of Bifurcation and Chaos 08(6), 1215–1229 (1998). DOI 10.1142/s0218127498000954
  28. Celestial Mechanics 17, 267–280 (1978). DOI 10.1007/BF01232832
  29. Celestial Mechanics and Dynamical Astronomy 132(11), 55 (2020). DOI 10.1007/s10569-020-09992-2
  30. Icarus 101(2), 244–264 (1993). DOI 10.1006/icar.1993.1022
  31. Icarus 123(2), 503–523 (1996). DOI 10.1006/icar.1996.0175
  32. Astrodynamics 3(3), 231–246 (2019). DOI 10.1007/s42064-019-0061-1
  33. Henrard, J.: On a perturbation theory using Lie transforms. Celestial Mechanics 3, 107–120 (1970). DOI 10.1007/BF01230436
  34. Hori, G.i.: Theory of General Perturbation with Unspecified Canonical Variables. Publications of the Astronomical Society of Japan 18(4), 287–296 (1966)
  35. Hughes, S.: Satellite orbits perturbed by direct solar radiation pressure - General expansion of the disturbing function. Planetary and Space Science 25, 809–815 (1977). DOI 10.1016/0032-0633(77)90034-4
  36. Journal of Geophysical Research 65, 3512 (1960). DOI 10.1029/JZ065i010p03512
  37. American Journal of Physics 68(10), 907–919 (2000). DOI 10.1119/1.1285895
  38. Kamel, A.A.: Perturbation Method in the Theory of Nonlinear Oscillations. Celestial Mechanics 3, 90–106 (1970). DOI 10.1007/BF01230435
  39. Kaula, W.M.: Development of the lunar and solar disturbing functions for a close satellite. The Astronomical Journal 67, 300–303 (1962). DOI 10.1086/108729
  40. Kelly, T.S.: A note on first-order normalizations of perturbed Keplerian systems. Celestial Mechanics and Dynamical Astronomy 46, 19–25 (1989). DOI 10.1007/BF02426708
  41. Geophysical Research Letters 38(1), L01706 (2011). DOI 10.1029/2010GL045777
  42. Kozai, Y.: Effects of Solar Radiation Pressure on the Motion of an Artificial Satellite. SAO Special Report 56, 25–34 (1961)
  43. Kozai, Y.: Mean values of cosine functions in elliptic motion. The Astronomical Journal 67, 311–312 (1962). DOI 10.1086/108731
  44. Kozai, Y.: Second-order solution of artificial satellite theory without air drag. The Astronomical Journal 67, 446–461 (1962). DOI 10.1086/108753
  45. Astronomy and Astrophysics 318, 308–314 (1997)
  46. Earth, Planets and Space 51, 979–986 (1999). DOI 10.1186/BF03351568
  47. Kummer, M.: On resonant non linearly coupled oscillators with two equal frequencies. Communications in Mathematical Physics 48, 53–79 (1976). DOI 10.1007/BF01609411. Erratum: Communications in Mathematical Physics 60, 192 (1978).
  48. Lara, M.: A Hopf variables view on the libration points dynamics. Celestial Mechanics and Dynamical Astronomy 129(3), 285–306 (2017). DOI 10.1007/s10569-017-9778-4
  49. Lara, M.: Solution to the main problem of the artificial satellite by reverse normalization. Nonlinear Dynamics 101(2), 1501–1524 (2020). DOI 10.1007/s11071-020-05857-3
  50. Lara, M.: Brouwer’s satellite solution redux. Celestial Mechanics and Dynamical Astronomy 133(47), 1–20 (2021). DOI 10.1007/s10569-021-10043-7
  51. De Gruyter, Berlin/Boston (2021). DOI 10.1515/9783110668513-006
  52. In: W. Lacarbonara (ed.) Advances in Nonlinear Dynamics, Volume I, no. 12 in NODYCON Conference Proceedings. Springer Nature, Switzerland (2024). DOI 10.1007/978-3-031-50631-4˙12. URL https://doi.org/10.1007/978-3-031-50631-4˙12
  53. Nonlinear Dynamics 111, 9377–9393 (2023). DOI 10.1007/s11071-023-08325-w
  54. Communications in Nonlinear Science and Numerical Simulations 59, 612–628 (2018). DOI 10.1016/j.cnsns.2017.12.007
  55. Astronomy and Astrophysics 634(Article A61), 1–9 (2020). DOI 10.1051/0004-6361/201937106
  56. Lumme, K.: On the Formation of Saturn’s Rings. Astrophysics and Space Science 15(3), 404–414 (1972). DOI 10.1007/BF00649769
  57. Astronomical Journal 67, 176–177 (1962). DOI 10.1086/108689
  58. International Journal of Bifurcation and Chaos 26, 1630011-1562 (2016). DOI 10.1142/S0218127416300111
  59. Acta Astronautica 203, 551–567 (2023). DOI 10.1016/j.actaastro.2022.12.008
  60. Astronomy and Planetary Sciences. Springer, London (UK) (1999)
  61. In: H. Doebner, J. Hennig (eds.) Proceedings of the XVth International Conference on Differential Geometric Methods in Theoretical Physics (Clausthal-Zellerfeld, Germany, 1986), pp. 403–414. World Scientific, Singapore (1987)
  62. Mignard, F.: Radiation pressure and dust particle dynamics. Icarus 49(3), 347–366 (1982). DOI 10.1016/0019-1035(82)90041-0
  63. Celestial Mechanics 33(3), 239–250 (1984). DOI 10.1007/BF01230506
  64. Adam Hilger Ltd., Bristol, UK (1987)
  65. Physics and Astronomy. Springer-Verlag, Berlin, Heidelberg, New York (2001)
  66. Musen, P.: The Influence of the Solar Radiation Pressure on the Motion of an Artificial Satellite. Journal of Geophysical Research 65, 1391–1396 (1960). DOI 10.1029/JZ065i005p01391
  67. Science 131, 935–936 (1960). DOI 10.1126/science.131.3404.935
  68. Nayfeh, A.H.: Perturbation Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2004)
  69. Astrophysics and Space Science 362, 215 (2017). DOI 10.1007/s10509-017-3195-8
  70. Science 131(3404), 920–921 (1960). DOI 10.1126/science.131.3404.920
  71. Peale, S.J.: Dust belt of the Earth. Journal of Geophysical Research 71(3), 911–933 (1966). DOI 10.1029/JZ071i003p00911
  72. Monthly Notices of the Royal Astronomical Society 65, 229–238 (1905). DOI 10.1093/mnras/65.3.229
  73. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Tome 2. Gauthier-Villars et fils (Paris) (1893). URL http://hdl.handle.net/1908/3852
  74. The Planetary Science Journal 4(2), 33 (2023). DOI 10.3847/PSJ/acb52e
  75. Robertson, H.P.: Dynamical Effects of Radiation in the Solar System. Monthly Notices of the Royal Astronomical Society 97, 423–437 (1937). DOI 10.1093/mnras/97.6.423
  76. Acta Astronautica 217, 181–187 (2024). DOI 10.1016/j.actaastro.2024.01.018
  77. Science 132, 1484–1486 (1960). DOI 10.1126/science.132.3438.1484
  78. Walter, H.G.: Conversion of osculating orbital elements into mean elements. Astronomical Journal 72, 994–997 (1967). DOI 10.1086/110374
  79. SAO Special Report 61 (1961)
Citations (1)

Summary

We haven't generated a summary for this paper yet.