Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal non-Hermitian flow in one-dimensional PT-symmetric quantum criticalities (2405.01640v1)

Published 2 May 2024 in cond-mat.stat-mech, cond-mat.mes-hall, and quant-ph

Abstract: The critical point of a topological phase transition is described by a conformal field theory (CFT), where the finite-size corrections to the ground state energy are uniquely related to its central charge. We study the finite-size scaling of the energy of non-Hermitian Su-Schrieffer-Heeger (SSH) model with parity and time-reversal symmetry ($\mathcal{PT}$) symmetry. We find that under open boundary condition (OBC), the energy scaling $E(L)\sim c/L$ reveals a negative central charge $c=-2$ at the non-Hermitian critical point, indicative of a non-unitary CFT. Furthermore, we discover a universal scaling function capturing the flow of a system from Dirac CFT with $c=1$ to a non-unitary CFT with $c=-2$. The scaling function demonstrates distinct behaviors at topologically non-trivial and trivial sides of critical points. Notably, within the realm of topological criticality, the scaling function exhibits an universal rise-dip-rise pattern, manifesting a characteristic singularity inherent in the non-Hermitian topological critical points. The analytic expression of the scaling function has been derived and is in good agreement with the numerical results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (80)
  1. Y. Ashida, Z. Gong and M. Ueda, Non-Hermitian physics, Advances in Physics 69, 249 (2020), 10.1080/00018732.2021.1876991.
  2. E. J. Bergholtz, J. C. Budich and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021), 10.1103/RevModPhys.93.015005.
  3. V. Kozii and L. Fu, Non-Hermitian Topological Theory of Finite-Lifetime Quasiparticles: Prediction of Bulk Fermi Arc Due to Exceptional Point, 10.48550/arXiv.1708.05841 (2017), 1708.05841.
  4. H. Shen and L. Fu, Quantum Oscillation from In-Gap States and a Non-Hermitian Landau Level Problem, Phys. Rev. Lett. 121, 026403 (2018), 10.1103/PhysRevLett.121.026403.
  5. M. Papaj, H. Isobe and L. Fu, Nodal arc of disordered Dirac fermions and non-Hermitian band theory, Phys. Rev. B 99, 201107 (2019), 10.1103/PhysRevB.99.201107.
  6. DMFT Reveals the Non-Hermitian Topology and Fermi Arcs in Heavy-Fermion Systems, Phys. Rev. Lett. 125, 227204 (2020), 10.1103/PhysRevLett.125.227204.
  7. Non-Hermitian physics and PT symmetry, Nature Phys 14, 11 (2018), 10.1038/nphys4323.
  8. Observation of bulk Fermi arc and polarization half charge from paired exceptional points, Science 359, 1009 (2018), 10.1126/science.aap9859.
  9. M. Ezawa, Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization, Phys. Rev. B 99, 201411 (2019), 10.1103/PhysRevB.99.201411.
  10. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16, 747 (2020), 10.1038/s41567-020-0922-9.
  11. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial, Proceedings of the National Academy of Sciences 117, 29561 (2020), 10.1073/pnas.2010580117.
  12. Reciprocal skin effect and its realization in a topolectrical circuit, Phys. Rev. Res. 2, 023265 (2020), 10.1103/PhysRevResearch.2.023265.
  13. Observation of a non-Hermitian phase transition in an optical quantum gas, Science 372, 88 (2021), 10.1126/science.abe9869.
  14. S. Yao and Z. Wang, Edge States and Topological Invariants of Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018), 10.1103/PhysRevLett.121.086803.
  15. C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-Hermitian systems, Phys. Rev. B 99, 201103 (2019), 10.1103/PhysRevB.99.201103.
  16. Hybrid Higher-Order Skin-Topological Modes in Nonreciprocal Systems, Phys. Rev. Lett. 123, 016805 (2019), 10.1103/PhysRevLett.123.016805.
  17. F. Song, S. Yao and Z. Wang, Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems, Phys. Rev. Lett. 123, 170401 (2019), 10.1103/PhysRevLett.123.170401.
  18. Topological Origin of Non-Hermitian Skin Effects, Phys. Rev. Lett. 124, 086801 (2020), 10.1103/PhysRevLett.124.086801.
  19. Critical non-Hermitian skin effect, Nat Commun 11, 5491 (2020), 10.1038/s41467-020-18917-4.
  20. K. Kawabata, M. Sato and K. Shiozaki, Higher-order non-Hermitian skin effect, Phys. Rev. B 102, 205118 (2020), 10.1103/PhysRevB.102.205118.
  21. K. Zhang, Z. Yang and C. Fang, Universal non-Hermitian skin effect in two and higher dimensions, Nat Commun 13, 2496 (2022), 10.1038/s41467-022-30161-6.
  22. Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions, Nat. Phys. 18, 385 (2022), 10.1038/s41567-021-01491-x.
  23. Two-dimensional non-Hermitian skin effect in an ultracold Fermi gas (2023), 2311.07931.
  24. K. Kawabata, T. Numasawa and S. Ryu, Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect, Phys. Rev. X 13, 021007 (2023), 10.1103/PhysRevX.13.021007.
  25. Scale-free non-Hermitian skin effect in a boundary-dissipated spin chain, SciPost Physics 15, 191 (2023), 10.21468/SciPostPhys.15.5.191.
  26. Entanglement Phase Transition Due to Reciprocity Breaking without Measurement or Postselection, PRX Quantum 5, 010313 (2024), 10.1103/PRXQuantum.5.010313.
  27. Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems, Phys. Rev. Lett. 121, 026808 (2018), 10.1103/PhysRevLett.121.026808.
  28. Y. Xiong, Why does bulk boundary correspondence fail in some non-hermitian topological models, J. Phys. Commun. 2, 035043 (2018), 10.1088/2399-6528/aab64a.
  29. L. Jin and Z. Song, Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry, Phys. Rev. B 99, 081103 (2019), 10.1103/PhysRevB.99.081103.
  30. F. K. Kunst and V. Dwivedi, Non-Hermitian systems and topology: A transfer-matrix perspective, Phys. Rev. B 99, 245116 (2019), 10.1103/PhysRevB.99.245116.
  31. E. Edvardsson, F. K. Kunst and E. J. Bergholtz, Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence, Phys. Rev. B 99, 081302 (2019), 10.1103/PhysRevB.99.081302.
  32. K. Yokomizo and S. Murakami, Non-Bloch Band Theory of Non-Hermitian Systems, Phys. Rev. Lett. 123, 066404 (2019), 10.1103/PhysRevLett.123.066404.
  33. Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models, SciPost Physics 7, 069 (2019), 10.21468/SciPostPhys.7.5.069.
  34. Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone Theory, Phys. Rev. Lett. 125, 226402 (2020), 10.1103/PhysRevLett.125.226402.
  35. K. Zhang, Z. Yang and C. Fang, Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems, Phys. Rev. Lett. 125, 126402 (2020), 10.1103/PhysRevLett.125.126402.
  36. R. Koch and J. C. Budich, Bulk-boundary correspondence in non-Hermitian systems: Stability analysis for generalized boundary conditions, Eur. Phys. J. D 74, 70 (2020), 10.1140/epjd/e2020-100641-y.
  37. K. Kawabata, N. Okuma and M. Sato, Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class, Phys. Rev. B 101, 195147 (2020), 10.1103/PhysRevB.101.195147.
  38. Classification of topological phases in one dimensional interacting non-Hermitian systems and emergent unitarity, Science Bulletin 66, 1731 (2021), 10.1016/j.scib.2021.04.027.
  39. H. Hu and E. Zhao, Knots and Non-Hermitian Bloch Bands, Phys. Rev. Lett. 126, 010401 (2021), 10.1103/PhysRevLett.126.010401.
  40. Y. Fu and Y. Zhang, Anatomy of open-boundary bulk in multiband non-Hermitian systems, Phys. Rev. B 107, 115412 (2023), 10.1103/PhysRevB.107.115412.
  41. Symmetry-protected exceptional and nodal points in non-Hermitian systems, SciPost Physics 15, 200 (2023), 10.21468/SciPostPhys.15.5.200.
  42. N. Okuma and M. Sato, Non-Hermitian Topological Phenomena: A Review, Annual Review of Condensed Matter Physics 14, 83 (2023), 10.1146/annurev-conmatphys-040521-033133.
  43. C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having $\mathsc{}P{}\mathsc{}T{}$ Symmetry, Phys. Rev. Lett. 80, 5243 (1998), 10.1103/PhysRevLett.80.5243.
  44. C. M. Bender, D. C. Brody and H. F. Jones, Complex Extension of Quantum Mechanics, Phys. Rev. Lett. 89, 270401 (2002), 10.1103/PhysRevLett.89.270401.
  45. S. Longhi, Bloch Oscillations in Complex Crystals with $\mathcal{}P{}\mathcal{}T{}$ Symmetry, Phys. Rev. Lett. 103, 123601 (2009), 10.1103/PhysRevLett.103.123601.
  46. Absence of topological insulator phases in non-Hermitian P T -symmetric Hamiltonians, Phys. Rev. B 84, 153101 (2011), 10.1103/PhysRevB.84.153101.
  47. Parity–time synthetic photonic lattices, Nature 488, 167 (2012), 10.1038/nature11298.
  48. Single-mode laser by parity-time symmetry breaking, Science 346, 972 (2014), 10.1126/science.1258479.
  49. V. V. Konotop, J. Yang and D. A. Zezyulin, Nonlinear waves in $\mathcal{}PT{}$-symmetric systems, Rev. Mod. Phys. 88, 035002 (2016), 10.1103/RevModPhys.88.035002.
  50. S. Longhi, Parity-time symmetry meets photonics: A new twist in non-Hermitian optics, EPL 120, 64001 (2018), 10.1209/0295-5075/120/64001.
  51. W. D. Heiss, The physics of exceptional points, J. Phys. A: Math. Theor. 45, 444016 (2012), 10.1088/1751-8113/45/44/444016.
  52. Phase-dependent chiral transport and effective non-hermitian dynamics in a bosonic kitaev-majorana chain, Phys. Rev. X 8, 041031 (2018), 10.1103/PhysRevX.8.041031.
  53. Non-hermitian dynamics without dissipation in quantum systems, Phys. Rev. A 99, 063834 (2019), 10.1103/PhysRevA.99.063834.
  54. B. Dóra and C. P. Moca, Quantum Quench in P T -Symmetric Luttinger Liquid, Phys. Rev. Lett. 124, 136802 (2020), 10.1103/PhysRevLett.124.136802.
  55. S. Gopalakrishnan and M. J. Gullans, Entanglement and Purification Transitions in Non-Hermitian Quantum Mechanics, Phys. Rev. Lett. 126, 170503 (2021), 10.1103/PhysRevLett.126.170503.
  56. Y. Le Gal, X. Turkeshi and M. Schirò, Volume-to-area law entanglement transition in a non-Hermitian free fermionic chain, SciPost Physics 14, 138 (2023), 10.21468/SciPostPhys.14.5.138.
  57. S. Morales-Tejera and K. Landsteiner, Non-Hermitian quantum quenches in holography, SciPost Physics 14, 030 (2023), 10.21468/SciPostPhys.14.3.030.
  58. Y. Ashida, S. Furukawa and M. Ueda, Parity-time-symmetric quantum critical phenomena, Nat Commun 8, 15791 (2017), 10.1038/ncomms15791.
  59. D. Arean, K. Landsteiner and I. Salazar Landea, Non-hermitian holography, SciPost Physics 9, 032 (2020), 10.21468/SciPostPhys.9.3.032.
  60. K. Kawabata and S. Ryu, Nonunitary Scaling Theory of Non-Hermitian Localization, Phys. Rev. Lett. 126, 166801 (2021), 10.1103/PhysRevLett.126.166801.
  61. Correlations at PT-Symmetric Quantum Critical Point, Phys. Rev. Lett. 128, 146804 (2022), 10.1103/PhysRevLett.128.146804.
  62. L. Grunwald, V. Meden and D. Kennes, Functional renormalization group for non-Hermitian and $\mathcal{}PT{}$-symmetric systems, SciPost Physics 12, 179 (2022), 10.21468/SciPostPhys.12.5.179.
  63. Y.-T. Tu, Y.-C. Tzeng and P.-Y. Chang, Rényi entropies and negative central charges in non-Hermitian quantum systems, SciPost Physics 12, 194 (2022), 10.21468/SciPostPhys.12.6.194.
  64. A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Physics B 241(2), 333 (1984), https://doi.org/10.1016/0550-3213(84)90052-X.
  65. Entanglement entropy of non-unitary conformal field theory, J. Phys. A: Math. Theor. 48, 04FT01 (2014), 10.1088/1751-8113/48/4/04FT01.
  66. Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory, Phys. Rev. Res. 2, 033069 (2020), 10.1103/PhysRevResearch.2.033069.
  67. Relating non-Hermitian and Hermitian quantum systems at criticality, SciPost Physics Core 6, 062 (2023), 10.21468/SciPostPhysCore.6.3.062.
  68. P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics. Springer-Verlag, New York, ISBN 9780387947853, 9781461274759, 10.1007/978-1-4612-2256-9 (1997).
  69. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, Journal of Physics A: Mathematical and Theoretical 42(50), 504005 (2009), 10.1088/1751-8113/42/50/504005.
  70. H. W. J. Blöte, J. L. Cardy and M. P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett. 56, 742 (1986), 10.1103/PhysRevLett.56.742.
  71. W. Koo and H. Saleur, Representations of the virasoro algebra from lattice models, Nuclear Physics B 426(3), 459 (1994), https://doi.org/10.1016/0550-3213(94)90018-3.
  72. I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56, 746 (1986), 10.1103/PhysRevLett.56.746.
  73. Universal finite-size scaling around topological quantum phase transitions, Phys. Rev. Lett. 116, 026402 (2016), 10.1103/PhysRevLett.116.026402.
  74. K. Wang and T. A. Sedrakyan, Universal finite-size amplitude and anomalous entanglement entropy of z=2𝑧2z=2italic_z = 2 quantum Lifshitz criticalities in topological chains, SciPost Phys. 12, 134 (2022), 10.21468/SciPostPhys.12.4.134.
  75. K. Wang and T. A. Sedrakyan, Universal finite-size scaling around tricriticality between topologically ordered, symmetry-protected topological, and trivial phases, Phys. Rev. B 101, 035410 (2020), 10.1103/PhysRevB.101.035410.
  76. L. M. Veríssimo, M. S. S. Pereira and M. L. Lyra, Tangential finite-size scaling at the gaussian topological transition in the quantum spin-1 anisotropic chain, Phys. Rev. B 104, 024409 (2021), 10.1103/PhysRevB.104.024409.
  77. Topological invariance and global Berry phase in non-Hermitian systems, Phys. Rev. A 87, 012118 (2013), 10.1103/PhysRevA.87.012118.
  78. Relation between PT -symmetry breaking and topologically nontrivial phases in the Su-Schrieffer-Heeger and Kitaev models, Phys. Rev. A 95, 053626 (2017), 10.1103/PhysRevA.95.053626.
  79. S. Lieu, Topological phases in the non-Hermitian Su-Schrieffer-Heeger model, Phys. Rev. B 97, 045106 (2018), 10.1103/PhysRevB.97.045106.
  80. Y. Zou, A. Milsted and G. Vidal, Conformal data and renormalization group flow in critical quantum spin chains using periodic uniform matrix product states, Phys. Rev. Lett. 121, 230402 (2018), 10.1103/PhysRevLett.121.230402.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com