The Simons Observatory: Combining cross-spectral foreground cleaning with multitracer $B$-mode delensing for improved constraints on inflation (2405.01621v2)
Abstract: The Simons Observatory (SO), due to start full science operations in early 2025, aims to set tight constraints on inflationary physics by inferring the tensor-to-scalar ratio $r$ from measurements of CMB polarization $B$-modes. Its nominal design targets a precision $\sigma(r=0) \leq 0.003$ without delensing. Achieving this goal and further reducing uncertainties requires the mitigation of other sources of large-scale $B$-modes such as Galactic foregrounds and weak gravitational lensing. We present an analysis pipeline aiming to estimate $r$ by including delensing within a cross-spectral likelihood, and demonstrate it on SO-like simulations. Lensing $B$-modes are synthesised using internal CMB lensing reconstructions as well as Planck-like CIB maps and LSST-like galaxy density maps. This $B$-mode template is then introduced into SO's power-spectrum-based foreground-cleaning algorithm by extending the likelihood function to include all auto- and cross-spectra between the lensing template and the SAT $B$-modes. Within this framework, we demonstrate the equivalence of map-based and cross-spectral delensing and use it to motivate an optimized pixel-weighting scheme for power spectrum estimation. We start by validating our pipeline in the simplistic case of uniform foreground spectral energy distributions (SEDs). In the absence of primordial $B$-modes, $\sigma(r)$ decreases by 37% as a result of delensing. Tensor modes at the level of $r=0.01$ are successfully detected by our pipeline. Even with more realistic foreground models including spatial variations in the dust and synchrotron spectral properties, we obtain unbiased estimates of $r$ by employing the moment-expansion method. In this case, delensing-related improvements range between 27% and 31%. These results constitute the first realistic assessment of the delensing performance at SO's nominal sensitivity level. (Abridged)
- Planck Collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astronomy & Astrophysics 641, A1 (2020a), arXiv: 1807.06205.
- M. Kamionkowski, A. Kosowsky, and A. Stebbins, Statistics of Cosmic Microwave Background Polarization, Physical Review D 55, 7368 (1997), arXiv:astro-ph/9611125.
- U. Seljak and M. Zaldarriaga, Signature of Gravity Waves in the Polarization of the Microwave Background, Physical Review Letters 78, 2054 (1997).
- M. Tristram et al., Improved limits on the tensor-to-scalar ratio using BICEP and Planck, Physical Review D 105, 083524 (2022), arXiv:2112.07961 [astro-ph].
- A. Ijjas and P. J. Steinhardt, Bouncing Cosmology made simple, Classical and Quantum Gravity 35, 135004 (2018), arXiv:1803.01961 [astro-ph, physics:gr-qc].
- T. S. O. Collaboration, The Simons Observatory: Science goals and forecasts, Journal of Cosmology and Astroparticle Physics 2019 (02), 056, arXiv:1808.07445 [astro-ph].
- T. S. O. Collaboration, The Simons Observatory: Astro2020 Decadal Project Whitepaper (2019b), number: arXiv:1907.08284 arXiv:1907.08284 [astro-ph].
- K. Abazajian et al., CMB-S4: Forecasting Constraints on Primordial Gravitational Waves, The Astrophysical Journal 926, 54 (2022).
- LiteBIRD Collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey, Progress of Theoretical and Experimental Physics 2023, 042F01 (2023), arXiv:2202.02773 [astro-ph].
- A. A. Starobinskii, Spectrum of relict gravitational radiation and the early state of the universe, Soviet Journal of Experimental and Theoretical Physics Letters 30, 682 (1979), ADS Bibcode: 1979JETPL..30..682S.
- A. Lewis and A. Challinor, Weak Gravitational Lensing of the CMB, Physics Reports 429, 1 (2006), arXiv:astro-ph/0601594.
- D. Hanson et al., Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope, Physical Review Letters 111, 141301 (2013), arXiv:1307.5830 [astro-ph].
- T. Namikawa et al., The Simons Observatory: Constraining inflationary gravitational waves with multi-tracer B-mode delensing, Physical Review D 105, 023511 (2022), arXiv:2110.09730 [astro-ph].
- BICEP/Keck and SPTpol Collaborations, A Demonstration of Improved Constraints on Primordial Gravitational Waves with Delensing, Physical Review D 103, 022004 (2021), arXiv:2011.08163 [astro-ph].
- S. K. Choi and L. A. Page, Polarized galactic synchrotron and dust emission and their correlation, Journal of Cosmology and Astroparticle Physics 2015 (12), 020, arXiv:1509.05934 [astro-ph].
- N. Krachmalnicoff et al., Characterization of foreground emission at degree angular scale for CMB B-modes observations. Thermal Dust and Synchrotron signal from Planck and WMAP data, Astronomy & Astrophysics 588, A65 (2016), arXiv:1511.00532 [astro-ph].
- J. Delabrouille and J.-F. Cardoso, Diffuse source separation in CMB observations (2007), arXiv:astro-ph/0702198.
- S. M. Leach et al., Component separation methods for the Planck mission, Astronomy & Astrophysics 491, 597 (2008), arXiv:0805.0269 [astro-ph].
- K. Wolz et al., The Simons Observatory: pipeline comparison and validation for large-scale B-modes (2023), arXiv:2302.04276 [astro-ph].
- M. Tegmark, Removing real-world foregrounds from CMB maps, The Astrophysical Journal 502, 1 (1998), arXiv:astro-ph/9712038.
- J. Chluba, J. C. Hill, and M. H. Abitbol, Rethinking CMB foregrounds: systematic extension of foreground parameterizations, Monthly Notices of the Royal Astronomical Society 472, 1195 (2017), arXiv:1701.00274 [astro-ph].
- S. Azzoni et al., A minimal power-spectrum-based moment expansion for CMB B-mode searches, Journal of Cosmology and Astroparticle Physics 2021 (05), 047, arXiv:2011.11575 [astro-ph].
- A. Challinor and G. Chon, Geometry of weak lensing of CMB polarization, Physical Review D 66, 127301 (2002), arXiv:astro-ph/0301064.
- A. Lewis, A. Challinor, and N. Turok, Analysis of CMB polarization on an incomplete sky, Physical Review D 65, 023505 (2001), arXiv:astro-ph/0106536.
- H. K. Eriksen et al., Power spectrum estimation from high-resolution maps by Gibbs sampling, The Astrophysical Journal Supplement Series 155, 227 (2004), arXiv:astro-ph/0407028.
- A. Baleato Lizancos, A. Challinor, and J. Carron, Limitations of CMB B-mode template delensing, Physical Review D 103, 023518 (2021a), arXiv:2010.14286 [astro-ph].
- T. Namikawa and R. Nagata, Lensing reconstruction from a patchwork of polarization maps, Journal of Cosmology and Astroparticle Physics 2014 (09), 009, arXiv:1405.6568 [astro-ph].
- T. Okamoto and W. Hu, CMB Lensing Reconstruction on the Full Sky, Physical Review D 67, 083002 (2003), arXiv:astro-ph/0301031.
- A. Lewis, A. Challinor, and D. Hanson, The shape of the CMB lensing bispectrum, Journal of Cosmology and Astroparticle Physics 2011 (03), 018, arXiv:1101.2234 [astro-ph].
- T. Namikawa, CMB internal delensing with general optimal estimator for higher-order correlations, Physical Review D 95, 103514 (2017), arXiv:1703.00169 [astro-ph].
- A. Baleato Lizancos, A. Challinor, and J. Carron, Impact of internal-delensing biases on searches for primordial B-modes of CMB polarisation, Journal of Cosmology and Astroparticle Physics 2021 (03), 016, arXiv:2007.01622 [astro-ph].
- A. van Engelen et al., CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps, The Astrophysical Journal 786, 13 (2014), arXiv:1310.7023 [astro-ph].
- A. Baleato Lizancos and S. Ferraro, The impact of extragalactic foregrounds on internal delensing of CMB B-mode polarization, Physical Review D 106, 063534 (2022), arXiv:2205.09000 [astro-ph].
- Planck Collaboration, Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies, Astronomy & Astrophysics 596, A109 (2016a), arXiv:1605.09387 [astro-ph].
- A. Dey et al., Overview of the DESI Legacy Imaging Surveys, The Astronomical Journal 157, 168 (2019), arXiv:1804.08657 [astro-ph].
- E. F. Schlafly et al., The unWISE Catalog: Two Billion Infrared Sources from Five Years of WISE Imaging, The Astrophysical Journal Supplement Series 240, 30 (2019), arXiv:1901.03337 [astro-ph].
- Z. Ivezić et al., LSST: from Science Drivers to Reference Design and Anticipated Data Products, The Astrophysical Journal 873, 111 (2018), arXiv:0805.2366 [astro-ph].
- C. M. Hirata and U. Seljak, Reconstruction of lensing from the cosmic microwave background polarization, Physical Review D 68, 083002 (2003), arXiv:astro-ph/0306354.
- T. Namikawa et al., LiteBIRD Science Goals and Forecasts: Improving Sensitivity to Inflationary Gravitational Waves with Multitracer Delensing (2023), arXiv:2312.05194 [astro-ph].
- B. D. Sherwin and M. Schmittfull, Delensing the CMB with the Cosmic Infrared Background, Physical Review D 92, 043005 (2015), arXiv:1502.05356 [astro-ph].
- B. Yu, J. C. Hill, and B. D. Sherwin, Multitracer CMB delensing maps from Planck and WISE data, Physical Review D 96, 123511 (2017), arXiv:1705.02332 [astro-ph].
- G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics (1986).
- Planck Collaboration, Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, Astronomy & Astrophysics 586, A133 (2016b), arXiv:1409.5738 [astro-ph].
- Planck Collaboration, Planck 2018 results. XI. Polarized dust foregrounds, Astronomy and Astrophysics 641, A11 (2020b), aDS Bibcode: 2020A&A…641A..11P.
- U. Fuskeland et al., Constraints on the spectral index of polarized synchrotron emission from WMAP and Faraday-corrected S-PASS data, Astronomy and Astrophysics 646, A69 (2021), aDS Bibcode: 2021A&A…646A..69F.
- S. Hamimeche and A. Lewis, Likelihood Analysis of CMB Temperature and Polarization Power Spectra, Physical Review D 77, 103013 (2008), arXiv:0801.0554 [astro-ph].
- L. Knox, Determination of inflationary observables by cosmic microwave background anisotropy experiments, Phys. Rev. D 52, 4307 (1995), arXiv:astro-ph/9504054 [astro-ph] .
- S. Belkner et al., CMB-S4: Iterative internal delensing and r constraints (2023), arXiv:2310.06729 [astro-ph.CO].
- J. Errard et al., Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization, Journal of Cosmology and Astroparticle Physics 2016 (03), 052, arXiv:1509.06770 [astro-ph].
- R. Stompor et al., Maximum Likelihood algorithm for parametric component separation in CMB experiments, Monthly Notices of the Royal Astronomical Society 392, 216 (2009), arXiv:0804.2645 [astro-ph].
- A. Lewis, A. Challinor, and A. Lasenby, Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models, Astrophys. J. 538, 473 (2000), arXiv:astro-ph/9911177 [astro-ph] .
- E. Calabrese et al., Cosmological Parameters from pre-Planck CMB Measurements: a 2017 Update, Physical Review D 95, 063525 (2017), arXiv:1702.03272 [astro-ph].
- K. M. Gorski et al., HEALPix – a Framework for High Resolution Discretization, and Fast Analysis of Data Distributed on the Sphere, The Astrophysical Journal 622, 759 (2005), arXiv:astro-ph/0409513.
- QUIET Collaboration, The QUIET Instrument, The Astrophysical Journal 768, 9 (2013), arXiv:1207.5562 [astro-ph].
- R. W. Ogburn IV et al., BICEP2 and Keck Array operational overview and status of observations, in Proceedings of SPIE, Vol. 8452 (2012) arXiv:1208.0638 [astro-ph].
- M. Mallaby-Kay et al., The Atacama Cosmology Telescope: Summary of DR4 and DR5 Data Products and Data Access, The Astrophysical Journal Supplement Series 255, 11 (2021), arXiv:2103.03154 [astro-ph].
- A. Baleato Lizancos et al., Delensing the CMB with the cosmic infrared background: the impact of foregrounds, Monthly Notices of the Royal Astronomical Society 514, 5786 (2022), arXiv:2102.01045 [astro-ph].
- S. Aiola et al., The Atacama Cosmology Telescope: DR4 maps and cosmological parameters, Journal of Cosmology and Astroparticle Physics 2020 (12), 047.
- B. Thorne et al., The Python Sky Model: software for simulating the Galactic microwave sky, Monthly Notices of the Royal Astronomical Society 469, 2821 (2017), arXiv:1608.02841 [astro-ph].
- Planck Collaboration, Planck 2015 results. X. Diffuse component separation: Foreground maps, Astronomy & Astrophysics 594, A10 (2016c), arXiv:1502.01588 [astro-ph].
- C. L. Bennett et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, The Astrophysical Journal Supplement Series 208, 20 (2012), arXiv:1212.5225v3 [astro-ph.CO].
- C. G. T. Haslam et al., A 408 MHz all-sky continuum survey. I - Observations at southern declinations and for the North Polar region., Astronomy and Astrophysics 100, 209 (1981), ADS Bibcode: 1981A&A…100..209H.
- C. G. T. Haslam et al., A 408-MHZ All-Sky Continuum Survey. II. The Atlas of Contour Maps, Astronomy and Astrophysics Supplement Series 47, 1 (1982), ADS Bibcode: 1982A&AS…47….1H.
- N. Krachmalnicoff et al., The S-PASS view of polarized Galactic Synchrotron at 2.3 GHz as a contaminant to CMB observations, Astronomy & Astrophysics 618, A166 (2018), arXiv:1802.01145 [astro-ph.GA].
- I. Abril-Cabezas et al., Impact of Galactic dust non-Gaussianity on searches for B-modes from inflation, Monthly Notices of the Royal Astronomical Society 527, 5751 (2023), arXiv:2309.09978 [astro-ph].
- E. Hivon et al., MASTER of the CMB Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex CMB Data Sets, The Astrophysical Journal 567, 2 (2002), arXiv:astro-ph/0105302.
- K. M. Smith, Pseudo-Cℓsubscript𝐶ℓ{C}_{\ell}italic_C start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT estimators which do not mix E and B modes, Physical Review D 74, 083002 (2006), arXiv:astro-ph/0511629.
- D. Alonso, J. Sanchez, and A. Slosar, A unified pseudo-Cℓsubscript𝐶ℓ{C}_{\ell}italic_C start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT framework, Monthly Notices of the Royal Astronomical Society 484, 4127 (2019), arXiv:1809.09603 [astro-ph].
- F. J. Qu et al., The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth, Astrophys. J. 962, 112 (2024), arXiv:2304.05202 [astro-ph.CO] .
- D. Beck et al., Bias on Tensor-to-Scalar Ratio Inference With Estimated Covariance Matrices, Monthly Notices of the Royal Astronomical Society 515, 229 (2022), arXiv:2202.05949 [astro-ph].
- A. Zonca et al., The Python Sky Model 3 software, Journal of Open Source Software 6, 3783 (2021), arXiv:2108.01444 [astro-ph].
- G. Efstathiou, Myths and Truths Concerning Estimation of Power Spectra, Monthly Notices of the Royal Astronomical Society 349, 603 (2004), arXiv:astro-ph/0307515.
- D. Beck, J. Errard, and R. Stompor, Impact of Polarized Galactic Foreground Emission on CMB Lensing Reconstruction and Delensing of B-Modes, Journal of Cosmology and Astroparticle Physics 2020 (06), 030, arXiv:2001.02641 [astro-ph].
- S. Azzoni et al., A hybrid map-Cℓsubscript𝐶ℓ{C}_{\ell}italic_C start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT component separation method for primordial CMB B-mode searches, Journal of Cosmology and Astroparticle Physics 2023 (03), 035, arXiv:2210.14838 [astro-ph].
- A. Lewis, A. Challinor, and A. Lasenby, Efficient Computation of CMB anisotropies in closed FRW models, The Astrophysical Journal 538, 473 (2000), arXiv:astro-ph/9911177.
- A. Zonca et al., healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python, Journal of Open Source Software 4, 1298 (2019).
- T. Namikawa, cmblensplus: A tool to analyze cosmic microwave background anisotropies, Astrophysics Source Code Library, record ascl:2104.021 (2021).
- D. Foreman-Mackey et al., emcee: The MCMC Hammer (2012).
- C. R. Harris et al., Array Programming with NumPy (2020).
- P. Virtanen et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261 (2020).
- J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science and Engineering 9, 90 (2007).