Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Configurable Learned Holography (2405.01558v2)

Published 24 Mar 2024 in cs.CV, cs.GR, cs.LG, eess.IV, and physics.optics

Abstract: In the pursuit of advancing holographic display technology, we face a unique yet persistent roadblock: the inflexibility of learned holography in adapting to various hardware configurations. This is due to the variances in the complex optical components and system settings in existing holographic displays. Although the emerging learned approaches have enabled rapid and high-quality hologram generation, any alteration in display hardware still requires a retraining of the model. Our work introduces a configurable learned model that interactively computes 3D holograms from RGB-only 2D images for a variety of holographic displays. The model can be conditioned to predefined hardware parameters of existing holographic displays such as working wavelengths, pixel pitch, propagation distance, and peak brightness without having to retrain. In addition, our model accommodates various hologram types, including conventional single-color and emerging multi-color holograms that simultaneously use multiple color primaries in holographic displays. Notably, we enabled our hologram computations to rely on identifying the correlation between depth estimation and 3D hologram synthesis tasks within the learning domain for the first time in the literature. We employ knowledge distillation via a student-teacher learning strategy to streamline our model for interactive performance. Achieving up to a 2x speed improvement compared to state-of-the-art models while consistently generating high-quality 3D holograms with different hardware configurations.

Summary

We haven't generated a summary for this paper yet.