NeRF in Robotics: A Survey (2405.01333v1)
Abstract: Meticulous 3D environment representations have been a longstanding goal in computer vision and robotics fields. The recent emergence of neural implicit representations has introduced radical innovation to this field as implicit representations enable numerous capabilities. Among these, the Neural Radiance Field (NeRF) has sparked a trend because of the huge representational advantages, such as simplified mathematical models, compact environment storage, and continuous scene representations. Apart from computer vision, NeRF has also shown tremendous potential in the field of robotics. Thus, we create this survey to provide a comprehensive understanding of NeRF in the field of robotics. By exploring the advantages and limitations of NeRF, as well as its current applications and future potential, we hope to shed light on this promising area of research. Our survey is divided into two main sections: \textit{The Application of NeRF in Robotics} and \textit{The Advance of NeRF in Robotics}, from the perspective of how NeRF enters the field of robotics. In the first section, we introduce and analyze some works that have been or could be used in the field of robotics from the perception and interaction perspectives. In the second section, we show some works related to improving NeRF's own properties, which are essential for deploying NeRF in the field of robotics. In the discussion section of the review, we summarize the existing challenges and provide some valuable future research directions for reference.
- B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in ECCV, 2020.
- J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science robotics, p. eabc5986, 2020.
- K. Elia, B. Leonard, L. Antonio, M. Matthias, K. Vladlen, and S. Davide, “Champion-level drone racing using deep reinforcement learning,” Nature, p. 982–987, 2023.
- A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas, “Deep learning in robotics: Survey on model structures and training strategies,” SMCS, pp. 266–279, 2020.
- J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,” ACM SIGGRAPH, pp. 165–174, 1984.
- M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srinivasan, J. T. Barron, and H. Kretzschmar, “Block-nerf: Scalable large scene neural view synthesis,” in CVPR, 2022, pp. 8248–8258.
- Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and M. Pollefeys, “Nice-slam: Neural implicit scalable encoding for slam,” in CVPR, 2022, pp. 12 786–12 796.
- M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson, J. Bohg, and M. Schwager, “Vision-only robot navigation in a neural radiance world,” RA-L, pp. 4606–4613, 2022.
- D. Maggio, M. Abate, J. Shi, C. Mario, and L. Carlone, “Loc-nerf: Monte carlo localization using neural radiance fields,” ICRA, 2023.
- N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam, “Clip-fields: Weakly supervised semantic fields for robotic memory,” RSS, 2023.
- Z. Hu, R. Tan, Y. Zhou, J. Woon, and C. Lv, “Template-based category-agnostic instance detection for robotic manipulation,” RA-L, pp. 12 451–12 458, 2022.
- Z. Zhu, Y. Chen, Z. Wu, C. Hou, Y. Shi, C. Li, P. Li, H. Zhao, and G. Zhou, “Latitude: Robotic global localization with truncated dynamic low-pass filter in city-scale nerf,” ICRA, 2022.
- A. Kundu, K. Genova, X. Yin, A. Fathi, C. Pantofaru, L. J. Guibas, A. Tagliasacchi, F. Dellaert, and T. Funkhouser, “Panoptic neural fields: A semantic object-aware neural scene representation,” in CVPR, 2022, pp. 12 871–12 881.
- F. Dellaert and L. Yen-Chen, “Neural volume rendering: Nerf and beyond,” arXiv preprint arXiv:2101.05204, 2020.
- Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari, J. Tompkin, V. Sitzmann, and S. Sridhar, “Neural fields in visual computing and beyond,” in CGF, 2022, pp. 641–676.
- K. Gao, Y. Gao, H. He, D. Lu, L. Xu, and J. Li, “Nerf: Neural radiance field in 3d vision, a comprehensive review,” TPAMI, 2022.
- A. Rabby and C. Zhang, “Beyondpixels: A comprehensive review of the evolution of neural radiance fields,” arXiv preprint arXiv:2306.03000, 2023.
- K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “Nerf++: Analyzing and improving neural radiance fields,” arXiv preprint arXiv:2010.07492, 2020.
- J. Sun, X. Chen, Q. Wang, Z. Li, H. Averbuch-Elor, X. Zhou, and N. Snavely, “Neural 3d reconstruction in the wild,” in ACM SIGGRAPH, 2022, pp. 1–9.
- E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit mapping and positioning in real-time,” in ICCV, 2021, pp. 6229–6238.
- E. Kruzhkov, A. Savinykh, P. Karpyshev, M. Kurenkov, E. Yudin, A. Potapov, and D. Tsetserukou, “Meslam: Memory efficient slam based on neural fields,” in SMC, 2022, pp. 430–435.
- X. Yang, H. Li, H. Zhai, Y. Ming, Y. Liu, and G. Zhang, “Vox-fusion: Dense tracking and mapping with voxel-based neural implicit representation,” in ISMAR, 2022, pp. 499–507.
- D. Lisus and C. Holmes, “Towards open world nerf-based slam,” CRV, 2023.
- M. M. Johari, C. Carta, and F. Fleuret, “Eslam: Efficient dense slam system based on hybrid representation of signed distance fields,” in CVPR, 2023, pp. 17 408–17 419.
- C.-M. Chung, Y.-C. Tseng, Y.-C. Hsu, X.-Q. Shi, Y.-H. Hua, J.-F. Yeh, W.-C. Chen, Y.-T. Chen, and W. H. Hsu, “Orbeez-slam: A real-time monocular visual slam with orb features and nerf-realized mapping,” in ICRA, 2023, pp. 9400–9406.
- A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam: Real-time dense monocular slam with neural radiance fields,” arXiv preprint arXiv:2210.13641, 2022.
- R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping and tracking,” in ISMAR, 2011, pp. 127–136.
- E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-time camera tracking and 3d reconstruction using signed distance functions,” in RSS, 2013.
- M. Oechsle, S. Peng, and A. Geiger, “Unisurf: Unifying neural implicit surfaces and radiance fields for multi-view reconstruction,” in ICCV, 2021, pp. 5589–5599.
- P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction,” (NeurIPS, 2021.
- D. Azinović, R. Martin-Brualla, D. B. Goldman, M. Nießner, and J. Thies, “Neural rgb-d surface reconstruction,” in CVPR, 2022, pp. 6290–6301.
- L. Yariv, J. Gu, Y. Kasten, and Y. Lipman, “Volume rendering of neural implicit surfaces,” NeurIPS, pp. 4805–4815, 2021.
- R. Or-El, X. Luo, M. Shan, E. Shechtman, J. J. Park, and I. Kemelmacher-Shlizerman, “Stylesdf: High-resolution 3d-consistent image and geometry generation,” in CVPR, 2022, pp. 13 503–13 513.
- Z. Yu, S. Peng, M. Niemeyer, T. Sattler, and A. Geiger, “Monosdf: Exploring monocular geometric cues for neural implicit surface reconstruction,” NeurIPS, pp. 25 018–25 032, 2022.
- H. Guo, S. Peng, H. Lin, Q. Wang, G. Zhang, H. Bao, and X. Zhou, “Neural 3d scene reconstruction with the manhattan-world assumption,” in CVPR, 2022, pp. 5511–5520.
- K. Li, Y. Tang, V. A. Prisacariu, and P. H. Torr, “Bnv-fusion: Dense 3d reconstruction using bi-level neural volume fusion,” in CVPR, 2022, pp. 6166–6175.
- Y. Ming, W. Ye, and A. Calway, “idf-slam: End-to-end rgb-d slam with neural implicit mapping and deep feature tracking,” arXiv preprint arXiv:2209.07919, 2022.
- M. El Banani, L. Gao, and J. Johnson, “Unsupervisedr&r: Unsupervised point cloud registration via differentiable rendering,” in CVPR, 2021, pp. 7129–7139.
- Z. Zhu, S. Peng, V. Larsson, Z. Cui, M. R. Oswald, A. Geiger, and M. Pollefeys, “Nicer-slam: Neural implicit scene encoding for rgb slam,” 3DV, 2023.
- R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth, “Nerf in the wild: Neural radiance fields for unconstrained photo collections,” in CVPR, 2021, pp. 7210–7219.
- K. Rematas, A. Liu, P. P. Srinivasan, J. T. Barron, A. Tagliasacchi, T. Funkhouser, and V. Ferrari, “Urban radiance fields,” in CVPR, 2022, pp. 12 932–12 942.
- S. Lee, L. Chen, J. Wang, A. Liniger, S. Kumar, and F. Yu, “Uncertainty guided policy for active robotic 3d reconstruction using neural radiance fields,” RA-L, 2022.
- Y. Ran, J. Zeng, S. He, J. Chen, L. Li, Y. Chen, G. Lee, and Q. Ye, “Neurar: Neural uncertainty for autonomous 3d reconstruction with implicit neural representations,” RA-L, pp. 1125–1132, 2023.
- J. Zeng, Y. Li, Y. Ran, S. Li, F. Gao, L. Li, S. He, J. Chen, and Q. Ye, “Efficient view path planning for autonomous implicit reconstruction,” in ICRA, 2023, pp. 4063–4069.
- P. Marza, L. Matignon, O. Simonin, D. Batra, C. Wolf, and D. S. Chaplot, “Autonerf: Training implicit scene representations with autonomous agents,” ICLR, 2024.
- E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Lassner, and C. Theobalt, “Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene from monocular video,” in ICCV, 2021, pp. 12 959–12 970.
- Z. Li, S. Niklaus, N. Snavely, and O. Wang, “Neural scene flow fields for space-time view synthesis of dynamic scenes,” in CVPR, 2021, pp. 6498–6508.
- W. Yuan, Z. Lv, T. Schmidt, and S. Lovegrove, “Star: Self-supervised tracking and reconstruction of rigid objects in motion with neural rendering,” in CVPR, 2021, pp. 13 144–13 152.
- W. Xian, J.-B. Huang, J. Kopf, and C. Kim, “Space-time neural irradiance fields for free-viewpoint video,” in CVPR, 2021, pp. 9421–9431.
- T. Li, M. Slavcheva, M. Zollhoefer, S. Green, C. Lassner, C. Kim, T. Schmidt, S. Lovegrove, M. Goesele, R. Newcombe et al., “Neural 3d video synthesis from multi-view video,” in CVPR, 2022, pp. 5521–5531.
- J. Ost, F. Mannan, N. Thuerey, J. Knodt, and F. Heide, “Neural scene graphs for dynamic scenes,” in CVPR, 2021, pp. 2856–2865.
- A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-nerf: Neural radiance fields for dynamic scenes,” in CVPR, 2021, pp. 10 318–10 327.
- K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-Brualla, “Nerfies: Deformable neural radiance fields,” in ICCV, 2021, pp. 5865–5874.
- K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman, R. Martin-Brualla, and S. M. Seitz, “Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields,” ACM TOG, 2021.
- Z. Yan, C. Li, and G. H. Lee, “Nerf-ds: Neural radiance fields for dynamic specular objects,” in CVPR, 2023, pp. 8285–8295.
- T. Wu, F. Zhong, A. Tagliasacchi, F. Cole, and C. Oztireli, “D^ 2nerf: Self-supervised decoupling of dynamic and static objects from a monocular video,” NeurIPS, pp. 32 653–32 666, 2022.
- J. Fang, T. Yi, X. Wang, L. Xie, X. Zhang, W. Liu, M. Nießner, and Q. Tian, “Fast dynamic radiance fields with time-aware neural voxels,” in SIGGRAPH, 2022, pp. 1–9.
- Y.-L. Liu, C. Gao, A. Meuleman, H.-Y. Tseng, A. Saraf, C. Kim, Y.-Y. Chuang, J. Kopf, and J.-B. Huang, “Robust dynamic radiance fields,” CVPR, 2023.
- J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in CVPR, 2016, pp. 4104–4113.
- C. Gao, A. Saraf, J. Kopf, and J.-B. Huang, “Dynamic view synthesis from dynamic monocular video,” in ICCV, 2021, pp. 5712–5721.
- H. Turki, J. Y. Zhang, F. Ferroni, and D. Ramanan, “Suds: Scalable urban dynamic scenes,” in CVPR, 2023, pp. 12 375–12 385.
- M. You and J. Hou, “Decoupling dynamic monocular videos for dynamic view synthesis,” arXiv preprint arXiv:2304.01716, 2023.
- Y. Du, Y. Zhang, H.-X. Yu, J. B. Tenenbaum, and J. Wu, “Neural radiance flow for 4d view synthesis and video processing,” in ICCV, 2021, pp. 14 304–14 314.
- M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging properties in self-supervised vision transformers,” in ICCV, 2021, pp. 9650–9660.
- J. Cen, Z. Zhou, J. Fang, W. Shen, L. Xie, D. Jiang, X. Zhang, Q. Tian et al., “Segment anything in 3d with nerfs,” NeurIPS, pp. 25 971–25 990, 2023.
- S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison, “In-place scene labelling and understanding with implicit scene representation,” in ICCV, 2021, pp. 15 838–15 847.
- H.-X. Yu, L. J. Guibas, and J. Wu, “Unsupervised discovery of object radiance fields,” ICLR, 2022.
- S. Liang, Y. Liu, S. Wu, Y.-W. Tai, and C.-K. Tang, “Onerf: Unsupervised 3d object segmentation from multiple views,” arXiv preprint arXiv:2211.12038, 2022.
- S. Kobayashi, E. Matsumoto, and V. Sitzmann, “Decomposing nerf for editing via feature field distillation,” NeurIPS, pp. 23 311–23 330, 2022.
- V. Tschernezki, I. Laina, D. Larlus, and A. Vedaldi, “Neural feature fusion fields: 3d distillation of self-supervised 2d image representations,” 3DV, 2022.
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in ICML, 2021, pp. 8748–8763.
- B. Li, K. Q. Weinberger, S. Belongie, V. Koltun, and R. Ranftl, “Language-driven semantic segmentation,” in ICLR, 2022.
- A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,” arXiv:2304.02643, 2023.
- V. Tschernezki, D. Larlus, and A. Vedaldi, “Neuraldiff: Segmenting 3d objects that move in egocentric videos,” in 3DV, 2021, pp. 910–919.
- S. Vora, N. Radwan, K. Greff, H. Meyer, K. Genova, M. S. Sajjadi, E. Pot, A. Tagliasacchi, and D. Duckworth, “Nesf: Neural semantic fields for generalizable semantic segmentation of 3d scenes,” TMLR, 2022.
- Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: learning dense volumetric segmentation from sparse annotation,” in MICCAI, 2016, pp. 424–432.
- S. Zhi, E. Sucar, A. Mouton, I. Haughton, T. Laidlow, and A. J. Davison, “ilabel: Interactive neural scene labelling,” arXiv preprint arXiv:2111.14637, 2021.
- K. Blomqvist, L. Ott, J. J. Chung, and R. Siegwart, “Baking in the feature: Accelerating volumetric segmentation by rendering feature maps,” arXiv preprint arXiv:2209.12744, 2022.
- Z. Liu, F. Milano, J. Frey, M. Hutter, R. Siegwart, H. Blum, and C. Cadena, “Unsupervised continual semantic adaptation through neural rendering,” CVPR, 2023.
- S. Zhu, G. Wang, H. Blum, J. Liu, L. Song, M. Pollefeys, and H. Wang, “Sni-slam: Semantic neural implicit slam,” CVPR, 2024.
- B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C. Chen, “Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmentation,” in CVPR, 2020, pp. 12 475–12 485.
- A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic segmentation,” in CVPR, 2019, pp. 9404–9413.
- X. Fu, S. Zhang, T. Chen, Y. Lu, L. Zhu, X. Zhou, A. Geiger, and Y. Liao, “Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene segmentation,” 3DV, 2022.
- Y. Liao, J. Xie, and A. Geiger, “Kitti-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d,” TPAMI, pp. 3292–3310, 2022.
- S. Liu, X. Zhang, Z. Zhang, R. Zhang, J.-Y. Zhu, and B. Russell, “Editing conditional radiance fields,” in ICCV, 2021, pp. 5773–5783.
- Y. Li, Z.-H. Lin, D. Forsyth, J.-B. Huang, and S. Wang, “Climatenerf: Extreme weather synthesis in neural radiance field,” in ICCV, 2023, pp. 3227–3238.
- A. Mirzaei, T. Aumentado-Armstrong, K. G. Derpanis, J. Kelly, M. A. Brubaker, I. Gilitschenski, and A. Levinshtein, “Spin-nerf: Multiview segmentation and perceptual inpainting with neural radiance fields,” in CVPR, 2023, pp. 20 669–20 679.
- W. Jang and L. Agapito, “Codenerf: Disentangled neural radiance fields for object categories,” in ICCV, 2021, pp. 12 949–12 958.
- C. Wang, M. Chai, M. He, D. Chen, and J. Liao, “Clip-nerf: Text-and-image driven manipulation of neural radiance fields,” in CVPR, 2022, pp. 3835–3844.
- C. Bao, Y. Zhang, B. Yang, T. Fan, Z. Yang, H. Bao, G. Zhang, and Z. Cui, “Sine: Semantic-driven image-based nerf editing with prior-guided editing field,” in CVPR, 2023, pp. 20 919–20 929.
- K. Tertikas, P. Despoina, B. Pan, J. J. Park, M. A. Uy, I. Emiris, Y. Avrithis, and L. Guibas, “Partnerf: Generating part-aware editable 3d shapes without 3d supervision,” CVPR, 2023.
- T. Xu and T. Harada, “Deforming radiance fields with cages,” in ECCV, 2022, pp. 159–175.
- Y. Peng, Y. Yan, S. Liu, Y. Cheng, S. Guan, B. Pan, G. Zhai, and X. Yang, “Cagenerf: Cage-based neural radiance field for generalized 3d deformation and animation,” NeurIPS, pp. 31 402–31 415, 2022.
- Y.-J. Yuan, Y.-T. Sun, Y.-K. Lai, Y. Ma, R. Jia, and L. Gao, “Nerf-editing: geometry editing of neural radiance fields,” in CVPR, 2022, pp. 18 353–18 364.
- O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in SGP, 2007, pp. 109–116.
- B. Yang, C. Bao, J. Zeng, H. Bao, Y. Zhang, Z. Cui, and G. Zhang, “Neumesh: Learning disentangled neural mesh-based implicit field for geometry and texture editing,” in ECCV, 2022, pp. 597–614.
- J.-K. Chen, J. Lyu, and Y.-X. Wang, “Neuraleditor: Editing neural radiance fields via manipulating point clouds,” in CVPR, 2023, pp. 12 439–12 448.
- A. Mirzaei, Y. Kant, J. Kelly, and I. Gilitschenski, “Laterf: Label and text driven object radiance fields,” in ECCV, 2022, pp. 20–36.
- B. Yang, Y. Zhang, Y. Xu, Y. Li, H. Zhou, H. Bao, G. Zhang, and Z. Cui, “Learning object-compositional neural radiance field for editable scene rendering,” in ICCV, 2021, pp. 13 779–13 788.
- H.-K. Liu, I. Shen, B.-Y. Chen et al., “Nerf-in: Free-form nerf inpainting with rgb-d priors,” CG&A, pp. 100–109, 2022.
- S. Weder, G. Garcia-Hernando, Á. Monszpart, M. Pollefeys, G. Brostow, M. Firman, and S. Vicente, “Removing objects from NeRFs,” in CVPR, 2023.
- T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution hash encoding,” ACM TOG, pp. 1–15, 2022.
- Y. Chen, Q. Yuan, Z. Li, Y. L. W. W. C. Xie, X. Wen, and Q. Yu, “Upst-nerf: Universal photorealistic style transfer of neural radiance fields for 3d scene,” arXiv preprint arXiv:2208.07059, 2022.
- P.-Z. Chiang, M.-S. Tsai, H.-Y. Tseng, W.-S. Lai, and W.-C. Chiu, “Stylizing 3d scene via implicit representation and hypernetwork,” in WACV, 2022, pp. 1475–1484.
- Y.-H. Huang, Y. He, Y.-J. Yuan, Y.-K. Lai, and L. Gao, “Stylizednerf: consistent 3d scene stylization as stylized nerf via 2d-3d mutual learning,” in CVPR, 2022, pp. 18 342–18 352.
- K. Zhang, N. Kolkin, S. Bi, F. Luan, Z. Xu, E. Shechtman, and N. Snavely, “Arf: Artistic radiance fields,” in ECCV, 2022, pp. 717–733.
- C. Wang, R. Jiang, M. Chai, M. He, D. Chen, and J. Liao, “Nerf-art: Text-driven neural radiance fields stylization,” TVCG, 2023.
- L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y. Lin, “inerf: Inverting neural radiance fields for pose estimation,” in IROS, 2021, pp. 1323–1330.
- Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “NeRF−−--- -: Neural radiance fields without known camera parameters,” arXiv preprint arXiv:2102.07064, 2021.
- S. Chen, Z. Wang, and V. Prisacariu, “Direct-posenet: absolute pose regression with photometric consistency,” in 3DV, 2021, pp. 1175–1185.
- A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, and A. de La Fortelle, “Lens: Localization enhanced by nerf synthesis,” in CoRL, 2022, pp. 1347–1356.
- H. Turki, D. Ramanan, and M. Satyanarayanan, “Mega-nerf: Scalable construction of large-scale nerfs for virtual fly-throughs,” in CVPR, 2022.
- S. Chen, X. Li, Z. Wang, and V. Prisacariu, “DFNet: Enhance absolute pose regression with direct feature matching,” in ECCV, 2022.
- H. Kuang, X. Chen, T. Guadagnino, N. Zimmerman, J. Behley, and C. Stachniss, “Ir-mcl: Implicit representation-based online global localization,” RA-L, 2022.
- Y. Lin, T. Müller, J. Tremblay, B. Wen, S. Tyree, A. Evans, P. A. Vela, and S. Birchfield, “Parallel inversion of neural radiance fields for robust pose estimation,” in ICRA, 2023, pp. 9377–9384.
- F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,” in ICRA, 1999, pp. 1322–1328.
- C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey, “Barf: Bundle-adjusting neural radiance fields,” in ICCV, 2021, pp. 5741–5751.
- Y. Xia, H. Tang, R. Timofte, and L. V. Gool, “Sinerf: Sinusoidal neural radiance fields for joint pose estimation and scene reconstruction,” in BMVC, 2022.
- V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural representations with periodic activation functions,” NeurIPS, pp. 7462–7473, 2020.
- Y. Shi, D. Rong, B. Ni, C. Chen, and W. Zhang, “Garf: Geometry-aware generalized neural radiance field,” arXiv preprint arXiv:2212.02280, 2022.
- Q. Meng, A. Chen, H. Luo, M. Wu, H. Su, L. Xu, X. He, and J. Yu, “Gnerf: Gan-based neural radiance field without posed camera,” in ICCV, 2021, pp. 6351–6361.
- Y. Jeong, S. Ahn, C. Choy, A. Anandkumar, M. Cho, and J. Park, “Self-calibrating neural radiance fields,” in ICCV, 2021.
- W. Bian, Z. Wang, K. Li, J. Bian, and V. A. Prisacariu, “Nope-nerf: Optimising neural radiance field with no pose prior,” 2023.
- P. Truong, M.-J. Rakotosaona, F. Manhardt, and F. Tombari, “Sparf: Neural radiance fields from sparse and noisy poses,” in CVPR, 2023, pp. 4190–4200.
- M. Tong, C. Dawson, and C. Fan, “Enforcing safety for vision-based controllers via control barrier functions and neural radiance fields,” ICRA, 2022.
- A. Byravan, J. Humplik, L. Hasenclever, A. Brussee, F. Nori, T. Haarnoja, B. Moran, S. Bohez, F. Sadeghi, B. Vujatovic et al., “Nerf2real: Sim2real transfer of vision-guided bipedal motion skills using neural radiance fields,” in ICRA, 2023, pp. 9362–9369.
- M. Kurenkov, A. Potapov, A. Savinykh, E. Yudin, E. Kruzhkov, P. Karpyshev, and D. Tsetserukou, “Nfomp: Neural field for optimal motion planner of differential drive robots with nonholonomic constraints,” RA-L, pp. 10 991–10 998, 2022.
- T. Chen, P. Culbertson, and M. Schwager, “Catnips: Collision avoidance through neural implicit probabilistic scenes,” arXiv preprint arXiv:2302.12931, 2023.
- O. Kwon, J. Park, and S. Oh, “Renderable neural radiance map for visual navigation,” in CVPR, 2023, pp. 9099–9108.
- P. Marza, L. Matignon, O. Simonin, and C. Wolf, “Multi-object navigation with dynamically learned neural implicit representations,” arXiv preprint arXiv:2210.05129, 2022.
- F. Li, S. R. Vutukur, H. Yu, I. Shugurov, B. Busam, S. Yang, and S. Ilic, “Nerf-pose: A first-reconstruct-then-regress approach for weakly-supervised 6d object pose estimation,” in ICCV, 2023, pp. 2123–2133.
- W.-C. Tseng, H.-J. Liao, L. Yen-Chen, and M. Sun, “Cla-nerf: Category-level articulated neural radiance field,” in ICRA, 2022, pp. 8454–8460.
- M. Z. Irshad, S. Zakharov, R. Ambrus, T. Kollar, Z. Kira, and A. Gaidon, “Shapo: Implicit representations for multi object shape appearance and pose optimization,” 2022.
- H. Chen, F. Manhardt, N. Navab, and B. Busam, “Texpose: Neural texture learning for self-supervised 6d object pose estimation,” in CVPR, 2023, pp. 4841–4852.
- B. Hu, J. Huang, Y. Liu, Y.-W. Tai, and C.-K. Tang, “Nerf-rpn: A general framework for object detection in nerfs,” in CVPR, 2023, pp. 23 528–23 538.
- C. Xu, B. Wu, J. Hou, S. Tsai, R. Li, J. Wang, W. Zhan, Z. He, P. Vajda, K. Keutzer et al., “Nerf-det: Learning geometry-aware volumetric representation for multi-view 3d object detection,” in CVPR, 2023, pp. 23 320–23 330.
- B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Müller, A. Evans, D. Fox, J. Kautz, and S. Birchfield, “Bundlesdf: Neural 6-dof tracking and 3d reconstruction of unknown objects,” in CVPR, 2023, pp. 606–617.
- S. Lewis, J. Pavlasek, and O. C. Jenkins, “Narf22: Neural articulated radiance fields for configuration-aware rendering,” in IROS, 2022, pp. 770–777.
- L. Chen, Y. Song, H. Bao, and X. Zhou, “Perceiving unseen 3d objects by poking the objects,” ICRA, 2023.
- Z. Tang, B. Sundaralingam, J. Tremblay, B. Wen, Y. Yuan, S. Tyree, C. Loop, A. Schwing, and S. Birchfield, “Rgb-only reconstruction of tabletop scenes for collision-free manipulator control,” in ICRA, 2023, pp. 1778–1785.
- Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba, “3d neural scene representations for visuomotor control,” in CoRL, 2022, pp. 112–123.
- D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint, “Learning multi-object dynamics with compositional neural radiance fields,” in CoRL, 2023, pp. 1755–1768.
- W. Wang, A. S. Morgan, A. M. Dollar, and G. D. Hager, “Dynamical scene representation and control with keypoint-conditioned neural radiance field,” in CASE, 2022, pp. 1138–1143.
- Y.-C. Lin, P. Florence, A. Zeng, J. T. Barron, Y. Du, W.-C. Ma, A. Simeonov, A. R. Garcia, and P. Isola, “Mira: Mental imagery for robotic affordances,” in CoRL, 2023, pp. 1916–1927.
- B. Shen, Z. Jiang, C. Choy, L. J. Guibas, S. Savarese, A. Anandkumar, and Y. Zhu, “Acid: Action-conditional implicit visual dynamics for deformable object manipulation,” RSS, 2022.
- J. Ichnowski, Y. Avigal, J. Kerr, and K. Goldberg, “Dex-nerf: Using a neural radiance field to grasp transparent objects,” CoRL, 2021.
- Q. Dai, Y. Zhu, Y. Geng, C. Ruan, J. Zhang, and H. Wang, “Graspnerf: multiview-based 6-dof grasp detection for transparent and specular objects using generalizable nerf,” in ICRA, 2023, pp. 1757–1763.
- J. Kerr, L. Fu, H. Huang, Y. Avigal, M. Tancik, J. Ichnowski, A. Kanazawa, and K. Goldberg, “Evo-nerf: Evolving nerf for sequential robot grasping of transparent objects,” in CoRL, 2022.
- S. Zhong, A. Albini, O. P. Jones, P. Maiolino, and I. Posner, “Touching a nerf: Leveraging neural radiance fields for tactile sensory data generation,” in CoRL, 2023, pp. 1618–1628.
- C. Higuera, S. Dong, B. Boots, and M. Mukadam, “Neural contact fields: Tracking extrinsic contact with tactile sensing,” in ICRA, 2023, pp. 12 576–12 582.
- D. Driess, I. Schubert, P. Florence, Y. Li, and M. Toussaint, “Reinforcement learning with neural radiance fields,” NeurIPS, 2022.
- D. Shim, S. Lee, and H. J. Kim, “Snerl: Semantic-aware neural radiance fields for reinforcement learning,” ICML, 2023.
- A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitzmann, “Neural descriptor fields: Se (3)-equivariant object representations for manipulation,” in ICRA, 2022, pp. 6394–6400.
- A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and P. Agrawal, “Se (3)-equivariant relational rearrangement with neural descriptor fields,” in CoRL, 2023, pp. 835–846.
- E. Chun, Y. Du, A. Simeonov, T. Lozano-Perez, and L. Kaelbling, “Local neural descriptor fields: Locally conditioned object representations for manipulation,” ICRA, 2023.
- L. Yen-Chen, P. Florence, J. T. Barron, T.-Y. Lin, A. Rodriguez, and P. Isola, “Nerf-supervision: Learning dense object descriptors from neural radiance fields,” ICRA, 2022.
- V. Blukis, K.-J. Yoon, T. Lee, J. Tremblay, B. Wen, I.-S. Kweon, D. Fox, and S. Birchfield, “One-shot neural fields for 3d object understanding,” in CVPRW, 2023.
- T. Weng, D. Held, F. Meier, and M. Mukadam, “Neural grasp distance fields for robot manipulation,” in ICRA, 2023, pp. 1814–1821.
- N. Khargonkar, N. Song, Z. Xu, B. Prabhakaran, and Y. Xiang, “Neuralgrasps: Learning implicit representations for grasps of multiple robotic hands,” in CoRL, 2023, pp. 516–526.
- A. Zhou, M. J. Kim, L. Wang, P. Florence, and C. Finn, “Nerf in the palm of your hand: Corrective augmentation for robotics via novel-view synthesis,” in PCVPR, 2023, pp. 17 907–17 917.
- X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and J. T. Barron, “Nerfactor: Neural factorization of shape and reflectance under an unknown illumination,” ACM TOG, pp. 1–18, 2021.
- P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T. Barron, “Nerv: Neural reflectance and visibility fields for relighting and view synthesis,” in CVPR, 2021, pp. 7495–7504.
- X. Chen, Q. Zhang, X. Li, Y. Chen, Y. Feng, X. Wang, and J. Wang, “Hallucinated neural radiance fields in the wild,” in CVPR, 2022, pp. 12 943–12 952.
- V. Rudnev, M. Elgharib, W. Smith, L. Liu, V. Golyanik, and C. Theobalt, “Nerf for outdoor scene relighting,” in ECCV, 2022, pp. 615–631.
- Z. Wang, T. Shen, J. Gao, S. Huang, J. Munkberg, J. Hasselgren, Z. Gojcic, W. Chen, and S. Fidler, “Neural fields meet explicit geometric representations for inverse rendering of urban scenes,” in CVPR, 2023, pp. 8370–8380.
- S. Bi, Z. Xu, P. Srinivasan, B. Mildenhall, K. Sunkavalli, M. Hašan, Y. Hold-Geoffroy, D. Kriegman, and R. Ramamoorthi, “Neural reflectance fields for appearance acquisition,” arXiv preprint arXiv:2008.03824, 2020.
- M. Boss, V. Jampani, R. Braun, C. Liu, J. Barron, and H. Lensch, “Neural-pil: Neural pre-integrated lighting for reflectance decomposition,” NeurIPS, pp. 10 691–10 704, 2021.
- K. Zhang, F. Luan, Q. Wang, K. Bala, and N. Snavely, “Physg: Inverse rendering with spherical gaussians for physics-based material editing and relighting,” in CVPR, 2021, pp. 5453–5462.
- M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. Lensch, “Nerd: Neural reflectance decomposition from image collections,” in ICCV, 2021, pp. 12 684–12 694.
- A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “Plenoctrees for real-time rendering of neural radiance fields,” in ICCV, 2021, pp. 5752–5761.
- C. Reiser, S. Peng, Y. Liao, and A. Geiger, “Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps,” in ICCV, 2021, pp. 14 335–14 345.
- A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Tensorial radiance fields,” in ECCV, 2022, pp. 333–350.
- J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman, “Mip-nerf 360: Unbounded anti-aliased neural radiance fields,” in CVPR, 2022, pp. 5470–5479.
- T. Neff, P. Stadlbauer, M. Parger, A. Kurz, J. H. Mueller, C. R. A. Chaitanya, A. Kaplanyan, and M. Steinberger, “Donerf: Towards real-time rendering of compact neural radiance fields using depth oracle networks,” in CGF, 2021, pp. 45–59.
- M. Piala and R. Clark, “Terminerf: Ray termination prediction for efficient neural rendering,” in 3DV, 2021, pp. 1106–1114.
- A. Dey, Y. Ahmine, and A. I. Comport, “Mip-nerf rgb-d: Depth assisted fast neural radiance fields,” WSCG, 2022.
- K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-supervised nerf: Fewer views and faster training for free,” in CVPR, 2022, pp. 12 882–12 891.
- H. Lin, S. Peng, Z. Xu, Y. Yan, Q. Shuai, H. Bao, and X. Zhou, “Efficient neural radiance fields for interactive free-viewpoint video,” in SIGGRAPH Asia, 2022, pp. 1–9.
- C. Sun, M. Sun, and H.-T. Chen, “Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction,” in CVPR, 2022, pp. 5459–5469.
- P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec, “Baking neural radiance fields for real-time view synthesis,” in ICCV, 2021, pp. 5875–5884.
- L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural sparse voxel fields,” NeurIPS, pp. 15 651–15 663, 2020.
- S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa, “Plenoxels: Radiance fields without neural networks,” in CVPR, 2022, pp. 5501–5510.
- Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli, and U. Neumann, “Point-nerf: Point-based neural radiance fields,” in CVPR, 2022, pp. 5438–5448.
- D. Rebain, W. Jiang, S. Yazdani, K. Li, K. M. Yi, and A. Tagliasacchi, “Derf: Decomposed radiance fields,” in CVPR, 2021, pp. 14 153–14 161.
- S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin, “Fastnerf: High-fidelity neural rendering at 200fps,” in ICCV, 2021, pp. 14 346–14 355.
- B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian splatting for real-time radiance field rendering,” ACM TOG, pp. 1–14, 2023.
- D. Xu, Y. Jiang, P. Wang, Z. Fan, H. Shi, and Z. Wang, “Sinnerf: Training neural radiance fields on complex scenes from a single image,” ECCV, 2022.
- C. Deng, C. Jiang, C. R. Qi, X. Yan, Y. Zhou, L. Guibas, D. Anguelov et al., “Nerdi: Single-view nerf synthesis with language-guided diffusion as general image priors,” in CVPR, 2023, pp. 20 637–20 647.
- A. Jain, M. Tancik, and P. Abbeel, “Putting nerf on a diet: Semantically consistent few-shot view synthesis,” in ICCV, 2021, pp. 5885–5894.
- M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. Sajjadi, A. Geiger, and N. Radwan, “Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs,” in CVPR, 2022, pp. 5480–5490.
- B. Roessle, J. T. Barron, B. Mildenhall, P. P. Srinivasan, and M. Nießner, “Dense depth priors for neural radiance fields from sparse input views,” in CVPR, 2022, pp. 12 892–12 901.
- Y. C. Ahn, S. Jang, S. Park, J.-Y. Kim, and N. Kang, “Panerf: Pseudo-view augmentation for improved neural radiance fields based on few-shot inputs,” arXiv preprint arXiv:2211.12758, 2022.
- Y.-J. Yuan, Y.-K. Lai, Y.-H. Huang, L. Kobbelt, and L. Gao, “Neural radiance fields from sparse rgb-d images for high-quality view synthesis,” TPAMI, 2022.
- J. Charles, W. Abbeloos, D. O. Reino, and R. Cipolla, “Style2nerf: An unsupervised one-shot nerf for semantic 3d reconstruction.” in BMVC, 2022, p. 104.
- D. Pavllo, D. J. Tan, M.-J. Rakotosaona, and F. Tombari, “Shape, pose, and appearance from a single image via bootstrapped radiance field inversion,” in CVPR, 2023, pp. 4391–4401.
- J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan, “Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields,” in ICCV, 2021, pp. 5855–5864.
- Z. Xie, J. Zhang, W. Li, F. Zhang, and L. Zhang, “S-nerf: Neural radiance fields for street views,” ICLR, 2023.
- Y. Xiangli, L. Xu, X. Pan, N. Zhao, A. Rao, C. Theobalt, B. Dai, and D. Lin, “Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering,” in ECCV, 2022, pp. 106–122.
- A. Meuleman, Y.-L. Liu, C. Gao, J.-B. Huang, C. Kim, M. H. Kim, and J. Kopf, “Progressively optimized local radiance fields for robust view synthesis,” in CVPR, 2023.
- J. Gu, M. Jiang, H. Li, X. Lu, G. Zhu, S. A. A. Shah, L. Zhang, and M. Bennamoun, “Ue4-nerf: Neural radiance field for real-time rendering of large-scale scene,” NeurIPS, 2023.
- F. Lu, Y. Xu, G. Chen, H. Li, K.-Y. Lin, and C. Jiang, “Urban radiance field representation with deformable neural mesh primitives,” in ICCV, 2023, pp. 465–476.
- A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelnerf: Neural radiance fields from one or few images,” in CVPR, 2021, pp. 4578–4587.
- A. Trevithick and B. Yang, “Grf: Learning a general radiance field for 3d representation and rendering,” in ICCV, 2021, pp. 15 182–15 192.
- J. Li, Z. Feng, Q. She, H. Ding, C. Wang, and G. H. Lee, “Mine: Towards continuous depth mpi with nerf for novel view synthesis,” in ICCV, 2021, pp. 12 578–12 588.
- J. Chibane, A. Bansal, V. Lazova, and G. Pons-Moll, “Stereo radiance fields (srf): Learning view synthesis for sparse views of novel scenes,” in CVPR, 2021, pp. 7911–7920.
- X. Huang, Q. Zhang, Y. Feng, X. Li, X. Wang, and Q. Wang, “Local implicit ray function for generalizable radiance field representation,” in CVPR, 2023, pp. 97–107.
- X. Li, C. Hong, Y. Wang, Z. Cao, K. Xian, and G. Lin, “Symmnerf: Learning to explore symmetry prior for single-view view synthesis,” in ACCV, 2022, pp. 1726–1742.
- A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su, “Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo,” in ICCV, 2021, pp. 14 124–14 133.
- Y. Liu, S. Peng, L. Liu, Q. Wang, P. Wang, C. Theobalt, X. Zhou, and W. Wang, “Neural rays for occlusion-aware image-based rendering,” in CVPR, 2022, pp. 7824–7833.
- G. Gafni, J. Thies, M. Zollhofer, and M. Nießner, “Dynamic neural radiance fields for monocular 4d facial avatar reconstruction,” in CVPR, 2021, pp. 8649–8658.
- J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner, “Face2face: Real-time face capture and reenactment of rgb videos,” in CVPR, 2016, pp. 2387–2395.
- Q. Wang, Z. Wang, K. Genova, P. P. Srinivasan, H. Zhou, J. T. Barron, R. Martin-Brualla, N. Snavely, and T. Funkhouser, “Ibrnet: Learning multi-view image-based rendering,” in CVPR, 2021, pp. 4690–4699.
- T. Xie, Z. Zong, Y. Qiu, X. Li, Y. Feng, Y. Yang, and C. Jiang, “Physgaussian: Physics-integrated 3d gaussians for generative dynamics,” CVPR, 2024.
- M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta, and P. Agrawal, “Reconciling reality through simulation: A real-to-sim-to-real approach for robust manipulation,” arXiv preprint arXiv:2403.03949, 2024.
- S. Hu, L. Yu, H. Lanqing, T. Hu, G. H. Lee, Z. Li et al., “Masknerf: Masked neural radiance fields for sparse view synthesis,” 2022.
- U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu, H. Yang, O. Ashual, O. Gafni et al., “Make-a-video: Text-to-video generation without text-video data,” ICLR, 2023.
- J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee, Y. Guo et al., “Improving image generation with better captions,” Computer Science, p. 8, 2023.
- T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor, T. Luhman, E. Luhman, C. Ng, R. Wang, and A. Ramesh, “Video generation models as world simulators,” 2024. [Online]. Available: https://openai.com/research/video-generation-models-as-world-simulators
- Y. Guo, K. Chen, S. Liang, Y.-J. Liu, H. Bao, and J. Zhang, “Ad-nerf: Audio driven neural radiance fields for talking head synthesis,” in ICCV, 2021, pp. 5784–5794.