Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Beamforming for Bistatic MIMO Sensing (2405.01197v1)

Published 2 May 2024 in eess.SP, cs.IT, and math.IT

Abstract: This paper considers the beamforming optimization for sensing a point-like scatterer using a bistatic multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) radar, which could be part of a joint communication and sensing system. The goal is to minimize the Cram\'er-Rao bound on the target position's estimation error, where the radar already knows an approximate position that is taken into account in the optimization. The optimization allows for beamforming with more than one beam per subcarrier. Optimal solutions for the beamforming are discussed for known and unknown channel gain. Numerical results show that beamforming with at most one beam per subcarrier is optimal for certain parameters, but for other parameters, optimal solutions need two beams on some subcarriers. In addition, the degree of freedom in selecting which end of the bistatic radar should transmit and receive is considered.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. M. S. Greco, P. Stinco, F. Gini, and A. Farina, “Cramér-Rao bounds and selection of bistatic channels for multistatic radar systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 4, pp. 2934–2948, Oct. 2011, doi: 10.1109/TAES.2011.6034675.
  2. S. Gogineni, M. Rangaswamy, B. D. Rigling, and A. Nehorai, “Cramér-Rao bounds for UMTS-based passive multistatic radar,” IEEE Trans. Signal Process., vol. 62, no. 1, pp. 95–106, Jan. 2014, doi: 10.1109/TSP.2013.2284758.
  3. Q. He, J. Hu, R. S. Blum, and Y. Wu, “Generalized Cramér–Rao bound for joint estimation of target position and velocity for active and passive radar networks,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2078–2089, Apr. 2016, doi: 10.1109/TSP.2015.2510978.
  4. J. Tong, H. Gaoming, T. Wei, and P. Huafu, “Cramér-Rao lower bound analysis for stochastic model based target parameter estimation in multistatic passive radar with direct-path interference,” IEEE Access, vol. 7, pp. 106 761–106 772, 2019, doi: 10.1109/ACCESS.2019.2926353.
  5. F. Zabini, E. Paolini, W. Xu, and A. Giorgetti, “Joint sensing and communication with multiple antennas and bistatic configuration,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Rome, Italy, May/Jun. 2023, pp. 1416–1421, doi: 10.1109/ICCWORKSHOPS57953.2023.10283688.
  6. A. Kakkavas, M. H. Castañeda García, R. A. Stirling-Gallacher, and J. A. Nossek, “Performance limits of single-anchor millimeter-wave positioning,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5196–5210, Nov. 2019, doi: 10.1109/TWC.2019.2934460.
  7. B. Friedlander, “Wireless direction-finding fundamentals,” in Classical and Modern Direction-of-Arrival Estimation, T. E. Tuncer and B. Friedlander, Eds. Burlington, MA, USA: Academic Press, 2009, pp. 1–51, doi: 10.1016/B978-0-12-374524-8.00001-5.
  8. Y. Shen and M. Z. Win, “Fundamental limits of wideband localization—Part I: A general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 4956–4980, Oct. 2010, doi: 10.1109/TIT.2010.2060110.
  9. K. Nordström, “Convexity of the inverse and Moore-Penrose inverse,” Linear Algebra Applicat., vol. 434, no. 6, pp. 1489–1512, Mar. 2011, doi: 10.1016/j.laa.2010.11.023.
  10. W. Xu, A. Dammann, and T. Laas, “Where are the things of the internet? Precise time of arrival estimation for IoT positioning,” in The Fifth Generation (5G) of Wireless Communication, A. Kishk, Ed. IntechOpen, Nov. 2018, pp. 59–79, doi: 10.5772/intechopen.78063.
  11. Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, and G. Caire, “On the fundamental tradeoff of integrated sensing and communications under Gaussian channels,” IEEE Trans. Inf. Theory, vol. 69, no. 9, pp. 5723–5751, Sep. 2023, doi: 10.1109/TIT.2023.3284449.
  12. P. Stoica and B. C. Ng, “On the Cramér–Rao bound under parametric constraints,” IEEE Signal Process. Lett., vol. 5, no. 7, pp. 177–179, Jul. 1998, doi: 10.1109/97.700921.

Summary

We haven't generated a summary for this paper yet.