Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

MTDT: A Multi-Task Deep Learning Digital Twin (2405.00922v2)

Published 2 May 2024 in cs.LG

Abstract: Traffic congestion has significant impacts on both the economy and the environment. Measures of Effectiveness (MOEs) have long been the standard for evaluating traffic intersections' level of service and operational efficiency. However, the scarcity of traditional high-resolution loop detector data (ATSPM) presents challenges in accurately measuring MOEs or capturing the intricate spatiotemporal characteristics inherent in urban intersection traffic. To address this challenge, we present a comprehensive intersection traffic flow simulation that utilizes a multi-task learning paradigm. This approach combines graph convolutions for primary estimating lane-wise exit and inflow with time series convolutions for secondary assessing multi-directional queue lengths and travel time distribution through any arbitrary urban traffic intersection. Compared to existing deep learning methodologies, the proposed Multi-Task Deep Learning Digital Twin (MTDT) distinguishes itself through its adaptability to local temporal and spatial features, such as signal timing plans, intersection topology, driving behaviors, and turning movement counts. We also show the benefit of multi-task learning in the effectiveness of individual traffic simulation tasks. Furthermore, our approach facilitates sequential computation and provides complete parallelization through GPU implementation. This not only streamlines the computational process but also enhances scalability and performance.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets