Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Hidden sectors of Chern-Simons Matter theories and Exact Holography (2405.00773v1)

Published 1 May 2024 in hep-th

Abstract: Chiral higher-spin gravity is a higher-spin extension of both self-dual Yang-Mills and self-dual gravity and is a unique local higher-spin gravity in four dimensions. Its existence implies that there are two closed subsectors in Chern-Simons matter theories. We make first steps in identifying these (anti-)chiral subsectors directly on the CFT side, which should result in a holographically dual pair where both sides are nontrivial, complete, yet exactly soluble. We also discuss closely related theories: self-dual Yang-Mills (SDYM) and self-dual gravity (SDGR) in the holographic context.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (131)
  1. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.
  2. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, arXiv:hep-th/9802150.
  3. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B428 (1998) 105–114, arXiv:hep-th/9802109.
  4. P. Haggi-Mani and B. Sundborg, “Free large N supersymmetric Yang-Mills theory as a string theory,” JHEP 04 (2000) 031, arXiv:hep-th/0002189 [hep-th].
  5. B. Sundborg, “Stringy gravity, interacting tensionless strings and massless higher spins,” Nucl. Phys. Proc. Suppl. 102 (2001) 113–119, arXiv:hep-th/0103247.
  6. E. Sezgin and P. Sundell, “Towards massless higher spin extension of D=5, N=8 gauged supergravity,” JHEP 09 (2001) 025, arXiv:hep-th/0107186 [hep-th].
  7. E. Sezgin and P. Sundell, “Massless higher spins and holography,” Nucl.Phys. B644 (2002) 303–370, arXiv:hep-th/0205131 [hep-th].
  8. N. Beisert, M. Bianchi, J. F. Morales, and H. Samtleben, “On the spectrum of AdS / CFT beyond supergravity,” JHEP 02 (2004) 001, arXiv:hep-th/0310292.
  9. N. Beisert, M. Bianchi, J. F. Morales, and H. Samtleben, “Higher spin symmetry and N=4 SYM,” JHEP 07 (2004) 058, arXiv:hep-th/0405057 [hep-th].
  10. L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “The Worldsheet Dual of the Symmetric Product CFT,” JHEP 04 (2019) 103, arXiv:1812.01007 [hep-th].
  11. N. Beisert et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math. Phys. 99 (2012) 3–32, arXiv:1012.3982 [hep-th].
  12. O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 10 (2008) 091, arXiv:0806.1218 [hep-th].
  13. O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes,” JHEP 11 (2008) 043, arXiv:0807.4924 [hep-th].
  14. S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, and X. Yin, “Chern-Simons Theory with Vector Fermion Matter,” Eur. Phys. J. C72 (2012) 2112, arXiv:1110.4386 [hep-th].
  15. O. Aharony, G. GurAri, and R. Yacoby, “d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories,” JHEP 1203 (2012) 037, arXiv:1110.4382 [hep-th].
  16. J. Maldacena and A. Zhiboedov, “Constraining conformal field theories with a slightly broken higher spin symmetry,” arXiv:1204.3882 [hep-th].
  17. O. Aharony, G. Gur-Ari, and R. Yacoby, “Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions,” JHEP 12 (2012) 028, arXiv:1207.4593 [hep-th].
  18. O. Aharony, “Baryons, monopoles and dualities in Chern-Simons-matter theories,” JHEP 02 (2016) 093, arXiv:1512.00161 [hep-th].
  19. A. Karch and D. Tong, “Particle-Vortex Duality from 3d Bosonization,” Phys. Rev. X6 no. 3, (2016) 031043, arXiv:1606.01893 [hep-th].
  20. N. Seiberg, T. Senthil, C. Wang, and E. Witten, “A Duality Web in 2+1 Dimensions and Condensed Matter Physics,” Annals Phys. 374 (2016) 395–433, arXiv:1606.01989 [hep-th].
  21. I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) vector model,” Phys. Lett. B550 (2002) 213–219, arXiv:hep-th/0210114.
  22. E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin theories and a test via cubic scalar couplings,” JHEP 0507 (2005) 044, arXiv:hep-th/0305040 [hep-th].
  23. R. G. Leigh and A. C. Petkou, “Holography of the N=1 higher spin theory on AdS(4),” JHEP 0306 (2003) 011, arXiv:hep-th/0304217 [hep-th].
  24. X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli, D. Francia, M. Grigoriev, E. Sezgin, and E. Skvortsov, “Snowmass White Paper: Higher Spin Gravity and Higher Spin symmetry,” arXiv:2205.01567 [hep-th].
  25. M. Flato and C. Fronsdal, “One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6.,” Lett.Math.Phys. 2 (1978) 421–426.
  26. X. Bekaert, N. Boulanger, and S. Leclercq, “Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex,” J.Phys. A43 (2010) 185401, arXiv:1002.0289 [hep-th].
  27. X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight, “Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory,” JHEP 11 (2015) 149, arXiv:1508.04292 [hep-th].
  28. J. Maldacena, D. Simmons-Duffin, and A. Zhiboedov, “Looking for a bulk point,” JHEP 01 (2017) 013, arXiv:1509.03612 [hep-th].
  29. C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121 no. 17, (2018) 171604, arXiv:1704.07859 [hep-th].
  30. D. Ponomarev, “Chiral Higher Spin Theories and Self-Duality,” JHEP 12 (2017) 141, arXiv:1710.00270 [hep-th].
  31. D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” Universe 4 no. 1, (2018) 2, arXiv:1710.00403 [hep-th].
  32. Y. Neiman, “Quartic locality of higher-spin gravity in de Sitter and Euclidean anti-de Sitter space,” Phys. Lett. B 843 (2023) 138048, arXiv:2302.00852 [hep-th].
  33. M. Blencowe, “A Consistent Interacting Massless Higher Spin Field Theory in D𝐷Ditalic_D = (2+1),” Class.Quant.Grav. 6 (1989) 443.
  34. E. Bergshoeff, M. P. Blencowe, and K. S. Stelle, “Area Preserving Diffeomorphisms and Higher Spin Algebra,” Commun. Math. Phys. 128 (1990) 213.
  35. A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields,” JHEP 1011 (2010) 007, arXiv:1008.4744 [hep-th].
  36. M. Henneaux and S.-J. Rey, “Nonlinear W∞subscript𝑊W_{\infty}italic_W start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity,” JHEP 1012 (2010) 007, arXiv:1008.4579 [hep-th].
  37. C. N. Pope and P. K. Townsend, “Conformal Higher Spin in (2+1)-dimensions,” Phys. Lett. B225 (1989) 245–250.
  38. E. S. Fradkin and V. Ya. Linetsky, “A Superconformal Theory of Massless Higher Spin Fields in D𝐷Ditalic_D = (2+1),” Mod. Phys. Lett. A4 (1989) 731. [Annals Phys.198,293(1990)].
  39. M. Grigoriev, I. Lovrekovic, and E. Skvortsov, “New Conformal Higher Spin Gravities in 3⁢d3𝑑3d3 italic_d,” JHEP 01 (2020) 059, arXiv:1909.13305 [hep-th].
  40. A. Y. Segal, “Conformal higher spin theory,” Nucl. Phys. B664 (2003) 59–130, arXiv:hep-th/0207212 [hep-th].
  41. A. A. Tseytlin, “On limits of superstring in A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Theor. Math. Phys. 133 (2002) 1376–1389, arXiv:hep-th/0201112 [hep-th]. [Teor. Mat. Fiz.133,69(2002)].
  42. X. Bekaert, E. Joung, and J. Mourad, “Effective action in a higher-spin background,” JHEP 02 (2011) 048, arXiv:1012.2103 [hep-th].
  43. M. A. Vasiliev, “Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions,” Phys. Lett. B243 (1990) 378–382.
  44. S. Prokushkin and M. A. Vasiliev, “Higher spin gauge interactions for massive matter fields in 3-D AdS space-time,” Nucl.Phys. B545 (1999) 385, arXiv:hep-th/9806236 [hep-th].
  45. M. A. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),” Phys. Lett. B567 (2003) 139–151, arXiv:hep-th/0304049 [hep-th].
  46. A. Sagnotti, E. Sezgin, and P. Sundell, “On higher spins with a strong sp(2,r) condition,” hep-th/0501156.
  47. R. Bonezzi, N. Boulanger, E. Sezgin, and P. Sundell, “Frobenius–Chern–Simons gauge theory,” J. Phys. A50 no. 5, (2017) 055401, arXiv:1607.00726 [hep-th].
  48. X. Bekaert, M. Grigoriev, and E. D. Skvortsov, “Higher Spin Extension of Fefferman-Graham Construction,” Universe 4 no. 2, (2018) 17, arXiv:1710.11463 [hep-th].
  49. C. Arias, R. Bonezzi, and P. Sundell, “Bosonic Higher Spin Gravity in any Dimension with Dynamical Two-Form,” JHEP 03 (2019) 001, arXiv:1712.03135 [hep-th].
  50. M. Grigoriev and E. D. Skvortsov, “Type-B Formal Higher Spin Gravity,” JHEP 05 (2018) 138, arXiv:1804.03196 [hep-th].
  51. A. Sharapov and E. Skvortsov, “Formal Higher Spin Gravities,” Nucl. Phys. B941 (2019) 838–860, arXiv:1901.01426 [hep-th].
  52. R. de Mello Koch, A. Jevicki, K. Suzuki, and J. Yoon, “AdS Maps and Diagrams of Bi-local Holography,” JHEP 03 (2019) 133, arXiv:1810.02332 [hep-th].
  53. O. Aharony, S. M. Chester, and E. Y. Urbach, “A Derivation of AdS/CFT for Vector Models,” arXiv:2011.06328 [hep-th].
  54. R. R. Metsaev, “S𝑆Sitalic_S matrix approach to massless higher spins theory. 2: The Case of internal symmetry,” Mod. Phys. Lett. A6 (1991) 2411–2421.
  55. R. R. Metsaev, “Poincare invariant dynamics of massless higher spins: Fourth order analysis on mass shell,” Mod. Phys. Lett. A6 (1991) 359–367.
  56. D. Ponomarev and E. D. Skvortsov, “Light-Front Higher-Spin Theories in Flat Space,” J. Phys. A50 no. 9, (2017) 095401, arXiv:1609.04655 [hep-th].
  57. R. R. Metsaev, “Light-cone gauge cubic interaction vertices for massless fields in AdS(4),” Nucl. Phys. B936 (2018) 320–351, arXiv:1807.07542 [hep-th].
  58. E. Skvortsov, “Light-Front Bootstrap for Chern-Simons Matter Theories,” JHEP 06 (2019) 058, arXiv:1811.12333 [hep-th].
  59. A. Sharapov, E. Skvortsov, and R. Van Dongen, “Chiral higher spin gravity and convex geometry,” SciPost Phys. 14 no. 6, (2023) 162, arXiv:2209.01796 [hep-th].
  60. A. Sharapov and E. Skvortsov, “Chiral higher spin gravity in (A)dS4 and secrets of Chern–Simons matter theories,” Nucl. Phys. B 985 (2022) 115982, arXiv:2205.15293 [hep-th].
  61. E. D. Skvortsov, T. Tran, and M. Tsulaia, “Quantum Chiral Higher Spin Gravity,” Phys. Rev. Lett. 121 no. 3, (2018) 031601, arXiv:1805.00048 [hep-th].
  62. E. Skvortsov and T. Tran, “One-loop Finiteness of Chiral Higher Spin Gravity,” arXiv:2004.10797 [hep-th].
  63. E. Skvortsov and Y. Yin, “On (spinor)-helicity and bosonization in AdS4/CFT3,” JHEP 03 (2023) 204, arXiv:2207.06976 [hep-th].
  64. J. Maldacena and A. Zhiboedov, “Constraining Conformal Field Theories with A Higher Spin Symmetry,” arXiv:1112.1016 [hep-th].
  65. S. Jain, S. P. Trivedi, S. R. Wadia, and S. Yokoyama, “Supersymmetric Chern-Simons Theories with Vector Matter,” JHEP 1210 (2012) 194, arXiv:1207.4750 [hep-th].
  66. O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena, and R. Yacoby, “The Thermal Free Energy in Large N Chern-Simons-Matter Theories,” JHEP 1303 (2013) 121, arXiv:1211.4843 [hep-th].
  67. S. Jain, S. Minwalla, T. Sharma, T. Takimi, S. R. Wadia, et al., “Phases of large N𝑁Nitalic_N vector Chern-Simons theories on S2⁢x⁢S1superscript𝑆2𝑥superscript𝑆1S^{2}xS^{1}italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_x italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT,” JHEP 1309 (2013) 009, arXiv:1301.6169 [hep-th].
  68. S. Jain, S. Minwalla, and S. Yokoyama, “Chern Simons duality with a fundamental boson and fermion,” JHEP 1311 (2013) 037, arXiv:1305.7235 [hep-th].
  69. S. Minwalla, S. Nath, N. Tanwar, and Vatsal, “The free energy of the large-N𝑁Nitalic_N fermionic Chern−\small--Simons theory in the ’temporal’ gauge,” arXiv:2307.11020 [hep-th].
  70. S. Minwalla, A. Mishra, N. Prabhakar, and T. Sharma, “The Hilbert space of large N Chern-Simons matter theories,” JHEP 07 (2022) 025, arXiv:2201.08410 [hep-th].
  71. G. Gur-Ari and R. Yacoby, “Correlators of Large N Fermionic Chern-Simons Vector Models,” JHEP 02 (2013) 150, arXiv:1211.1866 [hep-th].
  72. T. Takimi, “Duality and higher temperature phases of large N Chern-Simons matter theories on S2superscript𝑆2S^{2}italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT x S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT,” JHEP 1307 (2013) 177, arXiv:1304.3725 [hep-th].
  73. S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash, and E. Skvortsov, “On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models,” JHEP 01 (2017) 058, arXiv:1610.08472 [hep-th].
  74. S. Giombi, V. Kirilin, and E. Skvortsov, “Notes on Spinning Operators in Fermionic CFT,” JHEP 05 (2017) 041, arXiv:1701.06997 [hep-th].
  75. V. Guru Charan and S. Prakash, “On the Higher Spin Spectrum of Chern-Simons Theory coupled to Fermions in the Large Flavour Limit,” JHEP 02 (2018) 094, arXiv:1711.11300 [hep-th].
  76. S. Jain, V. Malvimat, A. Mehta, S. Prakash, and N. Sudhir, “All order exact result for the anomalous dimension of the scalar primary in Chern-Simons vector models,” Phys. Rev. D 101 no. 12, (2020) 126017, arXiv:1906.06342 [hep-th].
  77. S. Minwalla, A. Mishra, and N. Prabhakar, “Fermi seas from Bose condensates in Chern-Simons matter theories and a bosonic exclusion principle,” JHEP 11 (2020) 171, arXiv:2008.00024 [hep-th].
  78. S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S. R. Wadia, and S. Yokoyama, “Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter,” JHEP 04 (2015) 129, arXiv:1404.6373 [hep-th].
  79. K. Inbasekar, S. Jain, S. Mazumdar, S. Minwalla, V. Umesh, and S. Yokoyama, “Unitarity, crossing symmetry and duality in the scattering of 𝒩=1𝒩1\mathcal{N}=1caligraphic_N = 1 susy matter Chern-Simons theories,” JHEP 10 (2015) 176, arXiv:1505.06571 [hep-th].
  80. U. Mehta, S. Minwalla, C. Patel, S. Prakash, and K. Sharma, “Crossing Symmetry in Matter Chern-Simons Theories at finite N𝑁Nitalic_N and k𝑘kitalic_k,” arXiv:2210.07272 [hep-th].
  81. K. Inbasekar, S. Jain, P. Nayak, and V. Umesh, “All tree level scattering amplitudes in Chern-Simons theories with fundamental matter,” Phys. Rev. Lett. 121 no. 16, (2018) 161601, arXiv:1710.04227 [hep-th].
  82. K. Inbasekar, S. Jain, S. Majumdar, P. Nayak, T. Neogi, T. Sharma, R. Sinha, and V. Umesh, “Dual superconformal symmetry of 𝒩𝒩\mathcal{N}caligraphic_N = 2 Chern-Simons theory with fundamental matter at large N,” JHEP 06 (2019) 016, arXiv:1711.02672 [hep-th].
  83. S. Giombi, S. Prakash, and X. Yin, “A Note on CFT Correlators in Three Dimensions,” arXiv:1104.4317 [hep-th].
  84. S. D. Chowdhury, J. R. David, and S. Prakash, “Constraints on parity violating conformal field theories in d=3𝑑3d=3italic_d = 3,” JHEP 11 (2017) 171, arXiv:1707.03007 [hep-th].
  85. E. Sezgin, E. D. Skvortsov, and Y. Zhu, “Chern-Simons Matter Theories and Higher Spin Gravity,” JHEP 07 (2017) 133, arXiv:1705.03197 [hep-th].
  86. R. Yacoby, “Scalar Correlators in Bosonic Chern-Simons Vector Models,” arXiv:1805.11627 [hep-th].
  87. S. D. Chowdhury, J. R. David, and S. Prakash, “Bootstrap and collider physics of parity violating conformal field theories in d = 3,” JHEP 04 (2019) 023, arXiv:1812.07774 [hep-th].
  88. O. Aharony, S. Jain, and S. Minwalla, “Flows, Fixed Points and Duality in Chern-Simons-matter theories,” JHEP 12 (2018) 058, arXiv:1808.03317 [hep-th].
  89. P. Gerasimenko, A. Sharapov, and E. Skvortsov, “Slightly broken higher spin symmetry: general structure of correlators,” JHEP 01 (2022) 097, arXiv:2108.05441 [hep-th].
  90. A. Scalea, “On Correlation Functions as Higher-Spin Invariants,” Symmetry 15 no. 4, (2023) 950, arXiv:2303.11159 [hep-th].
  91. A. Bedhotiya and S. Prakash, “A test of bosonization at the level of four-point functions in Chern-Simons vector models,” JHEP 12 (2015) 032, arXiv:1506.05412 [hep-th].
  92. G. J. Turiaci and A. Zhiboedov, “Veneziano Amplitude of Vasiliev Theory,” JHEP 10 (2018) 034, arXiv:1802.04390 [hep-th].
  93. Z. Li, “Bootstrapping conformal four-point correlators with slightly broken higher spin symmetry and 3⁢D3𝐷3D3 italic_D bosonization,” JHEP 10 (2020) 007, arXiv:1906.05834 [hep-th].
  94. J. A. Silva, “Four point functions in CFT’s with slightly broken higher spin symmetry,” JHEP 05 (2021) 097, arXiv:2103.00275 [hep-th].
  95. R. R. Kalloor, “Four-point functions in large N𝑁Nitalic_N Chern-Simons fermionic theories,” JHEP 10 (2020) 028, arXiv:1910.14617 [hep-th].
  96. T. Kukolj, “Higher-spin Ward Identities of Chern-Simons-matter theory,” M.Sc. Thesis submitted to the Weizmann Institute on 02.02.2024 .
  97. T. Kukolj, “Higher-spin Ward Identities of Chern-Simons-matter theory,” To appear (2024) .
  98. S. Jain, R. R. John, and V. Malvimat, “Momentum space spinning correlators and higher spin equations in three dimensions,” JHEP 11 (2020) 049, arXiv:2005.07212 [hep-th].
  99. S. Jain, R. R. John, and V. Malvimat, “Constraining momentum space correlators using slightly broken higher spin symmetry,” JHEP 04 (2021) 231, arXiv:2008.08610 [hep-th].
  100. S. Jain and R. R. John, “Relation between parity-even and parity-odd CFT correlation functions in three dimensions,” JHEP 12 (2021) 067, arXiv:2107.00695 [hep-th].
  101. S. Jain, R. R. John, A. Mehta, and D. K. S, “Constraining momentum space CFT correlators with consistent position space OPE limit and the collider bound,” JHEP 02 (2022) 084, arXiv:2111.08024 [hep-th].
  102. S. Caron-Huot and Y.-Z. Li, “Helicity basis for three-dimensional conformal field theory,” JHEP 06 (2021) 041, arXiv:2102.08160 [hep-th].
  103. S. Jain, R. R. John, A. Mehta, A. A. Nizami, and A. Suresh, “Higher spin 3-point functions in 3d CFT using spinor-helicity variables,” JHEP 09 (2021) 041, arXiv:2106.00016 [hep-th].
  104. S. Jain, R. R. John, A. Mehta, A. A. Nizami, and A. Suresh, “Momentum space parity-odd CFT 3-point functions,” JHEP 08 (2021) 089, arXiv:2101.11635 [hep-th].
  105. S. Jain, R. R. John, A. Mehta, A. A. Nizami, and A. Suresh, “Double copy structure of parity-violating CFT correlators,” JHEP 07 (2021) 033, arXiv:2104.12803 [hep-th].
  106. Y. Gandhi, S. Jain, and R. R. John, “Anyonic correlation functions in Chern-Simons matter theories,” Phys. Rev. D 106 no. 4, (2022) 046014, arXiv:2106.09043 [hep-th].
  107. P. Jain, S. Jain, B. Sahoo, K. S. Dhruva, and A. Zade, “Mapping Large N Slightly Broken Higher Spin (SBHS) theory correlators to free theory correlators,” JHEP 12 (2023) 173, arXiv:2207.05101 [hep-th].
  108. S. Jain and D. K. S, “A Spin on the Bulk Locality of Slightly Broken Higher Spin Theories,” arXiv:2308.04490 [hep-th].
  109. O. Aharony, T. Kukolj, and R. Kalloor, “A chiral limit for Chern-Simons-matter theories,” To appear (2024) .
  110. A. Bzowski, P. McFadden, and K. Skenderis, “Implications of conformal invariance in momentum space,” JHEP 03 (2014) 111, arXiv:1304.7760 [hep-th].
  111. C. Coriano, L. Delle Rose, E. Mottola, and M. Serino, “Solving the Conformal Constraints for Scalar Operators in Momentum Space and the Evaluation of Feynman’s Master Integrals,” JHEP 07 (2013) 011, arXiv:1304.6944 [hep-th].
  112. A. Bzowski, P. McFadden, and K. Skenderis, “Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies,” JHEP 03 (2016) 066, arXiv:1510.08442 [hep-th].
  113. A. Bzowski, P. McFadden, and K. Skenderis, “Renormalised 3-point functions of stress tensors and conserved currents in CFT,” JHEP 11 (2018) 153, arXiv:1711.09105 [hep-th].
  114. J. M. Maldacena and G. L. Pimentel, “On graviton non-Gaussianities during inflation,” JHEP 09 (2011) 045, arXiv:1104.2846 [hep-th].
  115. K. Krasnov, E. Skvortsov, and T. Tran, “Actions for self-dual Higher Spin Gravities,” JHEP 08 (2021) 076, arXiv:2105.12782 [hep-th].
  116. K. Krasnov, “Self-Dual Gravity,” Class. Quant. Grav. 34 no. 9, (2017) 095001, arXiv:1610.01457 [hep-th].
  117. A. Lipstein and S. Nagy, “Self-Dual Gravity and Color-Kinematics Duality in AdS4,” Phys. Rev. Lett. 131 no. 8, (2023) 081501, arXiv:2304.07141 [hep-th].
  118. Y. Neiman, “Self-dual gravity in de Sitter space: Light-cone ansatz and static-patch scattering,” Phys. Rev. D 109 no. 2, (2024) 024039, arXiv:2303.17866 [gr-qc].
  119. C.-M. Chang, S. Minwalla, T. Sharma, and X. Yin, “ABJ Triality: from Higher Spin Fields to Strings,” J. Phys. A46 (2013) 214009, arXiv:1207.4485 [hep-th].
  120. E. Witten, “Quantization of Chern-Simons Gauge Theory With Complex Gauge Group,” Commun. Math. Phys. 137 (1991) 29–66.
  121. E. Witten, “Analytic Continuation Of Chern-Simons Theory,” AMS/IP Stud. Adv. Math. 50 (2011) 347–446, arXiv:1001.2933 [hep-th].
  122. A. Kapustin, B. Willett, and I. Yaakov, “Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter,” JHEP 03 (2010) 089, arXiv:0909.4559 [hep-th].
  123. M. Marino and P. Putrov, “ABJM theory as a Fermi gas,” J. Stat. Mech. 1203 (2012) P03001, arXiv:1110.4066 [hep-th].
  124. G. Gur-Ari and R. Yacoby, “Three Dimensional Bosonization From Supersymmetry,” JHEP 11 (2015) 013, arXiv:1507.04378 [hep-th].
  125. O. Aharony and A. Sharon, “Large N renormalization group flows in 3d 𝒩𝒩\mathcal{N}caligraphic_N = 1 Chern-Simons-Matter theories,” JHEP 07 (2019) 160, arXiv:1905.07146 [hep-th].
  126. S. Jain, D. K. S, D. Mazumdar, and S. Yadav, “A Foray on SCFT3 via Super Spinor-Helicity and Grassmann Twistor Variables,” arXiv:2312.03059 [hep-th].
  127. A. Sharapov and E. Skvortsov, “Characteristic Cohomology and Observables in Higher Spin Gravity,” JHEP 12 (2020) 190, arXiv:2006.13986 [hep-th].
  128. N. Boulanger, P. Kessel, E. D. Skvortsov, and M. Taronna, “Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal,” J. Phys. A49 no. 9, (2016) 095402, arXiv:1508.04139 [hep-th].
  129. S. Raju, “New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators,” Phys. Rev. D 85 (2012) 126009, arXiv:1201.6449 [hep-th].
  130. D. A. McGady and L. Rodina, “Higher-spin massless S𝑆Sitalic_S-matrices in four-dimensions,” Phys. Rev. D 90 no. 8, (2014) 084048, arXiv:1311.2938 [hep-th].
  131. D. Simmons-Duffin, “Projectors, Shadows, and Conformal Blocks,” JHEP 04 (2014) 146, arXiv:1204.3894 [hep-th].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com