2000 character limit reached
Hidden sectors of Chern-Simons Matter theories and Exact Holography (2405.00773v1)
Published 1 May 2024 in hep-th
Abstract: Chiral higher-spin gravity is a higher-spin extension of both self-dual Yang-Mills and self-dual gravity and is a unique local higher-spin gravity in four dimensions. Its existence implies that there are two closed subsectors in Chern-Simons matter theories. We make first steps in identifying these (anti-)chiral subsectors directly on the CFT side, which should result in a holographically dual pair where both sides are nontrivial, complete, yet exactly soluble. We also discuss closely related theories: self-dual Yang-Mills (SDYM) and self-dual gravity (SDGR) in the holographic context.
- J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.
- E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, arXiv:hep-th/9802150.
- S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B428 (1998) 105–114, arXiv:hep-th/9802109.
- P. Haggi-Mani and B. Sundborg, “Free large N supersymmetric Yang-Mills theory as a string theory,” JHEP 04 (2000) 031, arXiv:hep-th/0002189 [hep-th].
- B. Sundborg, “Stringy gravity, interacting tensionless strings and massless higher spins,” Nucl. Phys. Proc. Suppl. 102 (2001) 113–119, arXiv:hep-th/0103247.
- E. Sezgin and P. Sundell, “Towards massless higher spin extension of D=5, N=8 gauged supergravity,” JHEP 09 (2001) 025, arXiv:hep-th/0107186 [hep-th].
- E. Sezgin and P. Sundell, “Massless higher spins and holography,” Nucl.Phys. B644 (2002) 303–370, arXiv:hep-th/0205131 [hep-th].
- N. Beisert, M. Bianchi, J. F. Morales, and H. Samtleben, “On the spectrum of AdS / CFT beyond supergravity,” JHEP 02 (2004) 001, arXiv:hep-th/0310292.
- N. Beisert, M. Bianchi, J. F. Morales, and H. Samtleben, “Higher spin symmetry and N=4 SYM,” JHEP 07 (2004) 058, arXiv:hep-th/0405057 [hep-th].
- L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “The Worldsheet Dual of the Symmetric Product CFT,” JHEP 04 (2019) 103, arXiv:1812.01007 [hep-th].
- N. Beisert et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math. Phys. 99 (2012) 3–32, arXiv:1012.3982 [hep-th].
- O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 10 (2008) 091, arXiv:0806.1218 [hep-th].
- O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes,” JHEP 11 (2008) 043, arXiv:0807.4924 [hep-th].
- S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, and X. Yin, “Chern-Simons Theory with Vector Fermion Matter,” Eur. Phys. J. C72 (2012) 2112, arXiv:1110.4386 [hep-th].
- O. Aharony, G. GurAri, and R. Yacoby, “d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories,” JHEP 1203 (2012) 037, arXiv:1110.4382 [hep-th].
- J. Maldacena and A. Zhiboedov, “Constraining conformal field theories with a slightly broken higher spin symmetry,” arXiv:1204.3882 [hep-th].
- O. Aharony, G. Gur-Ari, and R. Yacoby, “Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions,” JHEP 12 (2012) 028, arXiv:1207.4593 [hep-th].
- O. Aharony, “Baryons, monopoles and dualities in Chern-Simons-matter theories,” JHEP 02 (2016) 093, arXiv:1512.00161 [hep-th].
- A. Karch and D. Tong, “Particle-Vortex Duality from 3d Bosonization,” Phys. Rev. X6 no. 3, (2016) 031043, arXiv:1606.01893 [hep-th].
- N. Seiberg, T. Senthil, C. Wang, and E. Witten, “A Duality Web in 2+1 Dimensions and Condensed Matter Physics,” Annals Phys. 374 (2016) 395–433, arXiv:1606.01989 [hep-th].
- I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O(N)𝑂𝑁O(N)italic_O ( italic_N ) vector model,” Phys. Lett. B550 (2002) 213–219, arXiv:hep-th/0210114.
- E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin theories and a test via cubic scalar couplings,” JHEP 0507 (2005) 044, arXiv:hep-th/0305040 [hep-th].
- R. G. Leigh and A. C. Petkou, “Holography of the N=1 higher spin theory on AdS(4),” JHEP 0306 (2003) 011, arXiv:hep-th/0304217 [hep-th].
- X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli, D. Francia, M. Grigoriev, E. Sezgin, and E. Skvortsov, “Snowmass White Paper: Higher Spin Gravity and Higher Spin symmetry,” arXiv:2205.01567 [hep-th].
- M. Flato and C. Fronsdal, “One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6.,” Lett.Math.Phys. 2 (1978) 421–426.
- X. Bekaert, N. Boulanger, and S. Leclercq, “Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex,” J.Phys. A43 (2010) 185401, arXiv:1002.0289 [hep-th].
- X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight, “Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory,” JHEP 11 (2015) 149, arXiv:1508.04292 [hep-th].
- J. Maldacena, D. Simmons-Duffin, and A. Zhiboedov, “Looking for a bulk point,” JHEP 01 (2017) 013, arXiv:1509.03612 [hep-th].
- C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121 no. 17, (2018) 171604, arXiv:1704.07859 [hep-th].
- D. Ponomarev, “Chiral Higher Spin Theories and Self-Duality,” JHEP 12 (2017) 141, arXiv:1710.00270 [hep-th].
- D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” Universe 4 no. 1, (2018) 2, arXiv:1710.00403 [hep-th].
- Y. Neiman, “Quartic locality of higher-spin gravity in de Sitter and Euclidean anti-de Sitter space,” Phys. Lett. B 843 (2023) 138048, arXiv:2302.00852 [hep-th].
- M. Blencowe, “A Consistent Interacting Massless Higher Spin Field Theory in D𝐷Ditalic_D = (2+1),” Class.Quant.Grav. 6 (1989) 443.
- E. Bergshoeff, M. P. Blencowe, and K. S. Stelle, “Area Preserving Diffeomorphisms and Higher Spin Algebra,” Commun. Math. Phys. 128 (1990) 213.
- A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields,” JHEP 1011 (2010) 007, arXiv:1008.4744 [hep-th].
- M. Henneaux and S.-J. Rey, “Nonlinear W∞subscript𝑊W_{\infty}italic_W start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity,” JHEP 1012 (2010) 007, arXiv:1008.4579 [hep-th].
- C. N. Pope and P. K. Townsend, “Conformal Higher Spin in (2+1)-dimensions,” Phys. Lett. B225 (1989) 245–250.
- E. S. Fradkin and V. Ya. Linetsky, “A Superconformal Theory of Massless Higher Spin Fields in D𝐷Ditalic_D = (2+1),” Mod. Phys. Lett. A4 (1989) 731. [Annals Phys.198,293(1990)].
- M. Grigoriev, I. Lovrekovic, and E. Skvortsov, “New Conformal Higher Spin Gravities in 3d3𝑑3d3 italic_d,” JHEP 01 (2020) 059, arXiv:1909.13305 [hep-th].
- A. Y. Segal, “Conformal higher spin theory,” Nucl. Phys. B664 (2003) 59–130, arXiv:hep-th/0207212 [hep-th].
- A. A. Tseytlin, “On limits of superstring in AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Theor. Math. Phys. 133 (2002) 1376–1389, arXiv:hep-th/0201112 [hep-th]. [Teor. Mat. Fiz.133,69(2002)].
- X. Bekaert, E. Joung, and J. Mourad, “Effective action in a higher-spin background,” JHEP 02 (2011) 048, arXiv:1012.2103 [hep-th].
- M. A. Vasiliev, “Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions,” Phys. Lett. B243 (1990) 378–382.
- S. Prokushkin and M. A. Vasiliev, “Higher spin gauge interactions for massive matter fields in 3-D AdS space-time,” Nucl.Phys. B545 (1999) 385, arXiv:hep-th/9806236 [hep-th].
- M. A. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),” Phys. Lett. B567 (2003) 139–151, arXiv:hep-th/0304049 [hep-th].
- A. Sagnotti, E. Sezgin, and P. Sundell, “On higher spins with a strong sp(2,r) condition,” hep-th/0501156.
- R. Bonezzi, N. Boulanger, E. Sezgin, and P. Sundell, “Frobenius–Chern–Simons gauge theory,” J. Phys. A50 no. 5, (2017) 055401, arXiv:1607.00726 [hep-th].
- X. Bekaert, M. Grigoriev, and E. D. Skvortsov, “Higher Spin Extension of Fefferman-Graham Construction,” Universe 4 no. 2, (2018) 17, arXiv:1710.11463 [hep-th].
- C. Arias, R. Bonezzi, and P. Sundell, “Bosonic Higher Spin Gravity in any Dimension with Dynamical Two-Form,” JHEP 03 (2019) 001, arXiv:1712.03135 [hep-th].
- M. Grigoriev and E. D. Skvortsov, “Type-B Formal Higher Spin Gravity,” JHEP 05 (2018) 138, arXiv:1804.03196 [hep-th].
- A. Sharapov and E. Skvortsov, “Formal Higher Spin Gravities,” Nucl. Phys. B941 (2019) 838–860, arXiv:1901.01426 [hep-th].
- R. de Mello Koch, A. Jevicki, K. Suzuki, and J. Yoon, “AdS Maps and Diagrams of Bi-local Holography,” JHEP 03 (2019) 133, arXiv:1810.02332 [hep-th].
- O. Aharony, S. M. Chester, and E. Y. Urbach, “A Derivation of AdS/CFT for Vector Models,” arXiv:2011.06328 [hep-th].
- R. R. Metsaev, “S𝑆Sitalic_S matrix approach to massless higher spins theory. 2: The Case of internal symmetry,” Mod. Phys. Lett. A6 (1991) 2411–2421.
- R. R. Metsaev, “Poincare invariant dynamics of massless higher spins: Fourth order analysis on mass shell,” Mod. Phys. Lett. A6 (1991) 359–367.
- D. Ponomarev and E. D. Skvortsov, “Light-Front Higher-Spin Theories in Flat Space,” J. Phys. A50 no. 9, (2017) 095401, arXiv:1609.04655 [hep-th].
- R. R. Metsaev, “Light-cone gauge cubic interaction vertices for massless fields in AdS(4),” Nucl. Phys. B936 (2018) 320–351, arXiv:1807.07542 [hep-th].
- E. Skvortsov, “Light-Front Bootstrap for Chern-Simons Matter Theories,” JHEP 06 (2019) 058, arXiv:1811.12333 [hep-th].
- A. Sharapov, E. Skvortsov, and R. Van Dongen, “Chiral higher spin gravity and convex geometry,” SciPost Phys. 14 no. 6, (2023) 162, arXiv:2209.01796 [hep-th].
- A. Sharapov and E. Skvortsov, “Chiral higher spin gravity in (A)dS4 and secrets of Chern–Simons matter theories,” Nucl. Phys. B 985 (2022) 115982, arXiv:2205.15293 [hep-th].
- E. D. Skvortsov, T. Tran, and M. Tsulaia, “Quantum Chiral Higher Spin Gravity,” Phys. Rev. Lett. 121 no. 3, (2018) 031601, arXiv:1805.00048 [hep-th].
- E. Skvortsov and T. Tran, “One-loop Finiteness of Chiral Higher Spin Gravity,” arXiv:2004.10797 [hep-th].
- E. Skvortsov and Y. Yin, “On (spinor)-helicity and bosonization in AdS4/CFT3,” JHEP 03 (2023) 204, arXiv:2207.06976 [hep-th].
- J. Maldacena and A. Zhiboedov, “Constraining Conformal Field Theories with A Higher Spin Symmetry,” arXiv:1112.1016 [hep-th].
- S. Jain, S. P. Trivedi, S. R. Wadia, and S. Yokoyama, “Supersymmetric Chern-Simons Theories with Vector Matter,” JHEP 1210 (2012) 194, arXiv:1207.4750 [hep-th].
- O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena, and R. Yacoby, “The Thermal Free Energy in Large N Chern-Simons-Matter Theories,” JHEP 1303 (2013) 121, arXiv:1211.4843 [hep-th].
- S. Jain, S. Minwalla, T. Sharma, T. Takimi, S. R. Wadia, et al., “Phases of large N𝑁Nitalic_N vector Chern-Simons theories on S2xS1superscript𝑆2𝑥superscript𝑆1S^{2}xS^{1}italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_x italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT,” JHEP 1309 (2013) 009, arXiv:1301.6169 [hep-th].
- S. Jain, S. Minwalla, and S. Yokoyama, “Chern Simons duality with a fundamental boson and fermion,” JHEP 1311 (2013) 037, arXiv:1305.7235 [hep-th].
- S. Minwalla, S. Nath, N. Tanwar, and Vatsal, “The free energy of the large-N𝑁Nitalic_N fermionic Chern−\small--Simons theory in the ’temporal’ gauge,” arXiv:2307.11020 [hep-th].
- S. Minwalla, A. Mishra, N. Prabhakar, and T. Sharma, “The Hilbert space of large N Chern-Simons matter theories,” JHEP 07 (2022) 025, arXiv:2201.08410 [hep-th].
- G. Gur-Ari and R. Yacoby, “Correlators of Large N Fermionic Chern-Simons Vector Models,” JHEP 02 (2013) 150, arXiv:1211.1866 [hep-th].
- T. Takimi, “Duality and higher temperature phases of large N Chern-Simons matter theories on S2superscript𝑆2S^{2}italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT x S1superscript𝑆1S^{1}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT,” JHEP 1307 (2013) 177, arXiv:1304.3725 [hep-th].
- S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash, and E. Skvortsov, “On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models,” JHEP 01 (2017) 058, arXiv:1610.08472 [hep-th].
- S. Giombi, V. Kirilin, and E. Skvortsov, “Notes on Spinning Operators in Fermionic CFT,” JHEP 05 (2017) 041, arXiv:1701.06997 [hep-th].
- V. Guru Charan and S. Prakash, “On the Higher Spin Spectrum of Chern-Simons Theory coupled to Fermions in the Large Flavour Limit,” JHEP 02 (2018) 094, arXiv:1711.11300 [hep-th].
- S. Jain, V. Malvimat, A. Mehta, S. Prakash, and N. Sudhir, “All order exact result for the anomalous dimension of the scalar primary in Chern-Simons vector models,” Phys. Rev. D 101 no. 12, (2020) 126017, arXiv:1906.06342 [hep-th].
- S. Minwalla, A. Mishra, and N. Prabhakar, “Fermi seas from Bose condensates in Chern-Simons matter theories and a bosonic exclusion principle,” JHEP 11 (2020) 171, arXiv:2008.00024 [hep-th].
- S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S. R. Wadia, and S. Yokoyama, “Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter,” JHEP 04 (2015) 129, arXiv:1404.6373 [hep-th].
- K. Inbasekar, S. Jain, S. Mazumdar, S. Minwalla, V. Umesh, and S. Yokoyama, “Unitarity, crossing symmetry and duality in the scattering of 𝒩=1𝒩1\mathcal{N}=1caligraphic_N = 1 susy matter Chern-Simons theories,” JHEP 10 (2015) 176, arXiv:1505.06571 [hep-th].
- U. Mehta, S. Minwalla, C. Patel, S. Prakash, and K. Sharma, “Crossing Symmetry in Matter Chern-Simons Theories at finite N𝑁Nitalic_N and k𝑘kitalic_k,” arXiv:2210.07272 [hep-th].
- K. Inbasekar, S. Jain, P. Nayak, and V. Umesh, “All tree level scattering amplitudes in Chern-Simons theories with fundamental matter,” Phys. Rev. Lett. 121 no. 16, (2018) 161601, arXiv:1710.04227 [hep-th].
- K. Inbasekar, S. Jain, S. Majumdar, P. Nayak, T. Neogi, T. Sharma, R. Sinha, and V. Umesh, “Dual superconformal symmetry of 𝒩𝒩\mathcal{N}caligraphic_N = 2 Chern-Simons theory with fundamental matter at large N,” JHEP 06 (2019) 016, arXiv:1711.02672 [hep-th].
- S. Giombi, S. Prakash, and X. Yin, “A Note on CFT Correlators in Three Dimensions,” arXiv:1104.4317 [hep-th].
- S. D. Chowdhury, J. R. David, and S. Prakash, “Constraints on parity violating conformal field theories in d=3𝑑3d=3italic_d = 3,” JHEP 11 (2017) 171, arXiv:1707.03007 [hep-th].
- E. Sezgin, E. D. Skvortsov, and Y. Zhu, “Chern-Simons Matter Theories and Higher Spin Gravity,” JHEP 07 (2017) 133, arXiv:1705.03197 [hep-th].
- R. Yacoby, “Scalar Correlators in Bosonic Chern-Simons Vector Models,” arXiv:1805.11627 [hep-th].
- S. D. Chowdhury, J. R. David, and S. Prakash, “Bootstrap and collider physics of parity violating conformal field theories in d = 3,” JHEP 04 (2019) 023, arXiv:1812.07774 [hep-th].
- O. Aharony, S. Jain, and S. Minwalla, “Flows, Fixed Points and Duality in Chern-Simons-matter theories,” JHEP 12 (2018) 058, arXiv:1808.03317 [hep-th].
- P. Gerasimenko, A. Sharapov, and E. Skvortsov, “Slightly broken higher spin symmetry: general structure of correlators,” JHEP 01 (2022) 097, arXiv:2108.05441 [hep-th].
- A. Scalea, “On Correlation Functions as Higher-Spin Invariants,” Symmetry 15 no. 4, (2023) 950, arXiv:2303.11159 [hep-th].
- A. Bedhotiya and S. Prakash, “A test of bosonization at the level of four-point functions in Chern-Simons vector models,” JHEP 12 (2015) 032, arXiv:1506.05412 [hep-th].
- G. J. Turiaci and A. Zhiboedov, “Veneziano Amplitude of Vasiliev Theory,” JHEP 10 (2018) 034, arXiv:1802.04390 [hep-th].
- Z. Li, “Bootstrapping conformal four-point correlators with slightly broken higher spin symmetry and 3D3𝐷3D3 italic_D bosonization,” JHEP 10 (2020) 007, arXiv:1906.05834 [hep-th].
- J. A. Silva, “Four point functions in CFT’s with slightly broken higher spin symmetry,” JHEP 05 (2021) 097, arXiv:2103.00275 [hep-th].
- R. R. Kalloor, “Four-point functions in large N𝑁Nitalic_N Chern-Simons fermionic theories,” JHEP 10 (2020) 028, arXiv:1910.14617 [hep-th].
- T. Kukolj, “Higher-spin Ward Identities of Chern-Simons-matter theory,” M.Sc. Thesis submitted to the Weizmann Institute on 02.02.2024 .
- T. Kukolj, “Higher-spin Ward Identities of Chern-Simons-matter theory,” To appear (2024) .
- S. Jain, R. R. John, and V. Malvimat, “Momentum space spinning correlators and higher spin equations in three dimensions,” JHEP 11 (2020) 049, arXiv:2005.07212 [hep-th].
- S. Jain, R. R. John, and V. Malvimat, “Constraining momentum space correlators using slightly broken higher spin symmetry,” JHEP 04 (2021) 231, arXiv:2008.08610 [hep-th].
- S. Jain and R. R. John, “Relation between parity-even and parity-odd CFT correlation functions in three dimensions,” JHEP 12 (2021) 067, arXiv:2107.00695 [hep-th].
- S. Jain, R. R. John, A. Mehta, and D. K. S, “Constraining momentum space CFT correlators with consistent position space OPE limit and the collider bound,” JHEP 02 (2022) 084, arXiv:2111.08024 [hep-th].
- S. Caron-Huot and Y.-Z. Li, “Helicity basis for three-dimensional conformal field theory,” JHEP 06 (2021) 041, arXiv:2102.08160 [hep-th].
- S. Jain, R. R. John, A. Mehta, A. A. Nizami, and A. Suresh, “Higher spin 3-point functions in 3d CFT using spinor-helicity variables,” JHEP 09 (2021) 041, arXiv:2106.00016 [hep-th].
- S. Jain, R. R. John, A. Mehta, A. A. Nizami, and A. Suresh, “Momentum space parity-odd CFT 3-point functions,” JHEP 08 (2021) 089, arXiv:2101.11635 [hep-th].
- S. Jain, R. R. John, A. Mehta, A. A. Nizami, and A. Suresh, “Double copy structure of parity-violating CFT correlators,” JHEP 07 (2021) 033, arXiv:2104.12803 [hep-th].
- Y. Gandhi, S. Jain, and R. R. John, “Anyonic correlation functions in Chern-Simons matter theories,” Phys. Rev. D 106 no. 4, (2022) 046014, arXiv:2106.09043 [hep-th].
- P. Jain, S. Jain, B. Sahoo, K. S. Dhruva, and A. Zade, “Mapping Large N Slightly Broken Higher Spin (SBHS) theory correlators to free theory correlators,” JHEP 12 (2023) 173, arXiv:2207.05101 [hep-th].
- S. Jain and D. K. S, “A Spin on the Bulk Locality of Slightly Broken Higher Spin Theories,” arXiv:2308.04490 [hep-th].
- O. Aharony, T. Kukolj, and R. Kalloor, “A chiral limit for Chern-Simons-matter theories,” To appear (2024) .
- A. Bzowski, P. McFadden, and K. Skenderis, “Implications of conformal invariance in momentum space,” JHEP 03 (2014) 111, arXiv:1304.7760 [hep-th].
- C. Coriano, L. Delle Rose, E. Mottola, and M. Serino, “Solving the Conformal Constraints for Scalar Operators in Momentum Space and the Evaluation of Feynman’s Master Integrals,” JHEP 07 (2013) 011, arXiv:1304.6944 [hep-th].
- A. Bzowski, P. McFadden, and K. Skenderis, “Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies,” JHEP 03 (2016) 066, arXiv:1510.08442 [hep-th].
- A. Bzowski, P. McFadden, and K. Skenderis, “Renormalised 3-point functions of stress tensors and conserved currents in CFT,” JHEP 11 (2018) 153, arXiv:1711.09105 [hep-th].
- J. M. Maldacena and G. L. Pimentel, “On graviton non-Gaussianities during inflation,” JHEP 09 (2011) 045, arXiv:1104.2846 [hep-th].
- K. Krasnov, E. Skvortsov, and T. Tran, “Actions for self-dual Higher Spin Gravities,” JHEP 08 (2021) 076, arXiv:2105.12782 [hep-th].
- K. Krasnov, “Self-Dual Gravity,” Class. Quant. Grav. 34 no. 9, (2017) 095001, arXiv:1610.01457 [hep-th].
- A. Lipstein and S. Nagy, “Self-Dual Gravity and Color-Kinematics Duality in AdS4,” Phys. Rev. Lett. 131 no. 8, (2023) 081501, arXiv:2304.07141 [hep-th].
- Y. Neiman, “Self-dual gravity in de Sitter space: Light-cone ansatz and static-patch scattering,” Phys. Rev. D 109 no. 2, (2024) 024039, arXiv:2303.17866 [gr-qc].
- C.-M. Chang, S. Minwalla, T. Sharma, and X. Yin, “ABJ Triality: from Higher Spin Fields to Strings,” J. Phys. A46 (2013) 214009, arXiv:1207.4485 [hep-th].
- E. Witten, “Quantization of Chern-Simons Gauge Theory With Complex Gauge Group,” Commun. Math. Phys. 137 (1991) 29–66.
- E. Witten, “Analytic Continuation Of Chern-Simons Theory,” AMS/IP Stud. Adv. Math. 50 (2011) 347–446, arXiv:1001.2933 [hep-th].
- A. Kapustin, B. Willett, and I. Yaakov, “Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter,” JHEP 03 (2010) 089, arXiv:0909.4559 [hep-th].
- M. Marino and P. Putrov, “ABJM theory as a Fermi gas,” J. Stat. Mech. 1203 (2012) P03001, arXiv:1110.4066 [hep-th].
- G. Gur-Ari and R. Yacoby, “Three Dimensional Bosonization From Supersymmetry,” JHEP 11 (2015) 013, arXiv:1507.04378 [hep-th].
- O. Aharony and A. Sharon, “Large N renormalization group flows in 3d 𝒩𝒩\mathcal{N}caligraphic_N = 1 Chern-Simons-Matter theories,” JHEP 07 (2019) 160, arXiv:1905.07146 [hep-th].
- S. Jain, D. K. S, D. Mazumdar, and S. Yadav, “A Foray on SCFT3 via Super Spinor-Helicity and Grassmann Twistor Variables,” arXiv:2312.03059 [hep-th].
- A. Sharapov and E. Skvortsov, “Characteristic Cohomology and Observables in Higher Spin Gravity,” JHEP 12 (2020) 190, arXiv:2006.13986 [hep-th].
- N. Boulanger, P. Kessel, E. D. Skvortsov, and M. Taronna, “Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal,” J. Phys. A49 no. 9, (2016) 095402, arXiv:1508.04139 [hep-th].
- S. Raju, “New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators,” Phys. Rev. D 85 (2012) 126009, arXiv:1201.6449 [hep-th].
- D. A. McGady and L. Rodina, “Higher-spin massless S𝑆Sitalic_S-matrices in four-dimensions,” Phys. Rev. D 90 no. 8, (2014) 084048, arXiv:1311.2938 [hep-th].
- D. Simmons-Duffin, “Projectors, Shadows, and Conformal Blocks,” JHEP 04 (2014) 146, arXiv:1204.3894 [hep-th].