Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum-Classical Separations in Shallow-Circuit-Based Learning with and without Noises (2405.00770v1)

Published 1 May 2024 in quant-ph, cs.CC, and cs.LG

Abstract: We study quantum-classical separations between classical and quantum supervised learning models based on constant depth (i.e., shallow) circuits, in scenarios with and without noises. We construct a classification problem defined by a noiseless shallow quantum circuit and rigorously prove that any classical neural network with bounded connectivity requires logarithmic depth to output correctly with a larger-than-exponentially-small probability. This unconditional near-optimal quantum-classical separation originates from the quantum nonlocality property that distinguishes quantum circuits from their classical counterparts. We further derive the noise thresholds for demonstrating such a separation on near-term quantum devices under the depolarization noise model. We prove that this separation will persist if the noise strength is upper bounded by an inverse polynomial with respect to the system size, and vanish if the noise strength is greater than an inverse polylogarithmic function. In addition, for quantum devices with constant noise strength, we prove that no super-polynomial classical-quantum separation exists for any classification task defined by shallow Clifford circuits, independent of the structures of the circuits that specify the learning models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com