Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustness of graph embedding methods for community detection (2405.00636v2)

Published 1 May 2024 in physics.soc-ph, cs.LG, cs.SI, and physics.data-an

Abstract: This study investigates the robustness of graph embedding methods for community detection in the face of network perturbations, specifically edge deletions. Graph embedding techniques, which represent nodes as low-dimensional vectors, are widely used for various graph machine learning tasks due to their ability to capture structural properties of networks effectively. However, the impact of perturbations on the performance of these methods remains relatively understudied. The research considers state-of-the-art graph embedding methods from two families: matrix factorization (e.g., LE, LLE, HOPE, M-NMF) and random walk-based (e.g., DeepWalk, LINE, node2vec). Through experiments conducted on both synthetic and real-world networks, the study reveals varying degrees of robustness within each family of graph embedding methods. The robustness is found to be influenced by factors such as network size, initial community partition strength, and the type of perturbation. Notably, node2vec and LLE consistently demonstrate higher robustness for community detection across different scenarios, including networks with degree and community size heterogeneity. These findings highlight the importance of selecting an appropriate graph embedding method based on the specific characteristics of the network and the task at hand, particularly in scenarios where robustness to perturbations is crucial.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. P. Goyal and E. Ferrara, Knowl.-Based Syst. 151, 78 (2018a).
  2. M. Boguñá, D. Krioukov, and K. C. Claffy, Nat. Phys. 5, 74 (2008).
  3. M. Boguñá, F. Papadopoulos, and D. Krioukov, Nat. Commun. 1, 62 (2010).
  4. D. Liben-Nowell and J. Kleinberg, in Proceedings of the twelfth international conference on Information and knowledge management (Association for Computing Machinery, 2003) pp. 556–559.
  5. M. Pereda and E. Estrada, Pattern Recognit. 86, 320 (2019).
  6. S. Fortunato, Phys. Rep. 486, 75 (2010).
  7. S. Fortunato and D. Hric, Phys. Rep. 659, 1 (2016).
  8. P. Moriano, J. Finke, and Y.-Y. Ahn, Sci. Rep. 9, 4358 (2019).
  9. B. Karrer, E. Levina, and M. E. J. Newman, Phys. Rev. E 77, 046119 (2008).
  10. S. Wang, J. Liu, and X. Wang, J. Stat. Mech: Theory Exp. 2017, 043405 (2017a).
  11. M. Tian and P. Moriano, Phys. Rev. E 108, 054302 (2023).
  12. S. Wang and J. Liu, IEEE Syst. J. 13, 582 (2018).
  13. M. Xu, SIAM Rev. 63, 825 (2021).
  14. A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys. Rev. E 78, 046110 (2008).
  15. R. Albert, H. Jeong, and A.-L. Barabási, Nature 406, 378 (2000).
  16. M. Belkin and P. Niyogi, Neural Comput. 15, 1373 (2003).
  17. S. T. Roweis and L. K. Saul, Science 290, 2323 (2000).
  18. B. Perozzi, R. Al-Rfou, and S. Skiena, in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (2014) pp. 701–710.
  19. A. Grover and J. Leskovec, in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (2016) pp. 855–864.
  20. E. Schubert, A. Lang, and G. Feher, in International Conference on Similarity Search and Applications (Springer, 2021) pp. 217–231.
  21. https://github.com/zf-wei/Robustness-of-Graph-Embeddings-for-Community-Detection (accessed on April 29, 2024).
  22. A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 016118 (2009a).
  23. A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70, 066111 (2004).
  24. M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002).
  25. P. W. Holland, K. B. Laskey, and S. Leinhardt, Soc. Networks 5, 109 (1983).
  26. U. Brandes, J. Math. Sociol. 25, 163 (2001).
  27. A. Zeng and W. Liu, Phys. Rev. E 85, 066130 (2012).
  28. A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 056117 (2009b).
  29. S. P. Lloyd, IEEE Trans. Inf. Theory 28, 129 (1982).
  30. P. Goyal and E. Ferrara, J. Open Source Softw. 3, 00876 (2018b).
  31. https://github.com/zf-wei/LLECupy (accessed on April 29, 2024).
  32. B. Rozemberczki, O. Kiss, and R. Sarkar, in Proceedings of the 29th ACM international conference on information and knowledge management (2020) pp. 3125–3132.
  33. https://github.com/shenweichen/GraphEmbedding (accessed on April 29, 2024).
  34. https://pypi.org/project/node2vec (accessed on April 29, 2024).
  35. D. A. Reynolds, Encyclopedia of biometrics 741, 827–832 (2009).
  36. A. Gates and Y.-Y. Ahn, J. Open Source Softw. 4, 01264 (2019).
  37. A. L. N. Fred and A. K. Jain, in 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., Vol. 2 (IEEE, 2003).
  38. J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Trans. Knowl. Discovery Data 1, 2 (2007).
  39. U. von Luxburg, Stat. Comput. 17, 395 (2007).
  40. A. Clauset, C. R. Shalizi, and M. E. J. Newman, SIAM Rev. 51, 661 (2009).
  41. J. Alstott, E. Bullmore, and D. Plenz, PLoS One 9, e85777 (2014).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets