Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven approximation of Koopman operators and generators: Convergence rates and error bounds (2405.00539v2)

Published 1 May 2024 in math.NA, cs.NA, and math.DS

Abstract: Global information about dynamical systems can be extracted by analysing associated infinite-dimensional transfer operators, such as Perron-Frobenius and Koopman operators as well as their infinitesimal generators. In practice, these operators typically need to be approximated from data. Popular approximation methods are extended dynamic mode decomposition (EDMD) and generator extended mode decomposition (gEDMD). We propose a unified framework that leverages Monte Carlo sampling to approximate the operator of interest on a finite-dimensional space spanned by a set of basis functions. Our framework contains EDMD and gEDMD as special cases, but can also be used to approximate more general operators. Our key contributions are proofs of the convergence of the approximating operator and its spectrum under non-restrictive conditions. Moreover, we derive explicit convergence rates and account for the presence of noise in the observations. Whilst all these results are broadly applicable, they also refine previous analyses of EDMD and gEDMD. We verify the analytical results with the aid of several numerical experiments.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com