Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermodynamic formalism of countably generated self-affine sets (2405.00520v2)

Published 1 May 2024 in math.DS

Abstract: In this article, we further develop the thermodynamic formalism of affine iterated function systems with countably many transformations by showing the existence and extending earlier characterisations of the equilibrium states of finite affine iterated function systems to the countably infinite case. As an application, under mild conditions, we prove that the affinity dimension of a countable affine iterated function system is equal to the supremum of the affinity dimensions of its finite subsystems. We deduce corollaries concerning the Hausdorff dimension of countably generated self-affine sets in dimensions $1$, $2$, and $3$ satisfying mild deterministic assumptions and in arbitrary dimension with generic translations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. K. Barański. Hausdorff dimension of the limit sets of some planar geometric constructions. Adv. Math., 210(1):215–245, 2007.
  2. Hausdorff dimension of planar self-affine sets and measures. Invent. Math., 216(3):601–659, 2019.
  3. Birkhoff and Lyapunov spectra on planar self-affine sets. Int. Math. Res. Not. IMRN, (10):7966–8005, 2021.
  4. B. Bárány and A. Käenmäki. Ledrappier-Young formula and exact dimensionality of self-affine measures. Adv. Math., 318:88–129, 2017.
  5. Dimension of self-affine sets for fixed translation vectors. J. Lond. Math. Soc. (2), 98(1):223–252, 2018.
  6. Domination, almost additivity, and thermodynamic formalism for planar matrix cocycles. Israel J. Math., 239(1):173–214, 2020.
  7. Assouad dimension of planar self-affine sets. Trans. Amer. Math. Soc., 374(2):1297–1326, 2021.
  8. Finer geometry of planar self-affine sets. Preprint, available at arXiv:2107.00983, 2021.
  9. J. Bochi and I. D. Morris. Equilibrium states of generalised singular value potentials and applications to affine iterated function systems. Geom. Funct. Anal., 28(4):995–1028, 2018.
  10. R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, revised edition, 2008. With a preface by David Ruelle, Edited by Jean-René Chazottes.
  11. T. Das and D. Simmons. The Hausdorff and dynamical dimensions of self-affine sponges: a dimension gap result. Invent. Math., 210(1):85–134, 2017.
  12. K. J. Falconer. The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc., 103(2):339–350, 1988.
  13. D.-J. Feng. Dimension of invariant measures for affine iterated function systems. Duke Math. J., 172(4):701–774, 2023.
  14. D.-J. Feng and Z. Feng. Typical self-affine sets with non-empty interior. Asian J. Math., 2022. To appear, available at arXiv:2209.09126.
  15. D.-J. Feng and A. Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete Contin. Dyn. Syst., 30(3):699–708, 2011.
  16. D.-J. Feng and P. Shmerkin. Non-conformal repellers and the continuity of pressure for matrix cocycles. Geom. Funct. Anal., 24(4):1101–1128, 2014.
  17. J. M. Fraser. On the packing dimension of box-like self-affine sets in the plane. Nonlinearity, 25(7):2075–2092, 2012.
  18. M. Hochman. On self-similar sets with overlaps and inverse theorems for entropy. Ann. of Math. (2), 180(2):773–822, 2014.
  19. M. Hochman and A. Rapaport. Hausdorff dimension of planar self-affine sets and measures with overlaps. J. Eur. Math. Soc. (JEMS), 24(7):2361–2441, 2022.
  20. Topics in matrix analysis. Cambridge University Press, Cambridge, 1991.
  21. Upper semi-continuity of entropy in non-compact settings. Math. Res. Lett., 27(4):1055–1077, 2020.
  22. Hausdorff dimension for randomly perturbed self affine attractors. Comm. Math. Phys., 270(2):519–544, 2007.
  23. A. Käenmäki. On natural invariant measures on generalised iterated function systems. Ann. Acad. Sci. Fenn. Math., 29(2):419–458, 2004.
  24. A. Käenmäki and I. D. Morris. Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension. Proc. Lond. Math. Soc. (3), 116(4):929–956, 2018.
  25. A. Käenmäki and H. W. J. Reeve. Multifractal analysis of Birkhoff averages for typical infinitely generated self-affine sets. J. Fractal Geom., 1(1):83–152, 2014.
  26. A. Käenmäki and M. Vilppolainen. Dimension and measures on sub-self-affine sets. Monatsh. Math., 161(3):271–293, 2010.
  27. R. D. Mauldin and M. Urbański. Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. (3), 73(1):105–154, 1996.
  28. J. S. Milne. Algebraic groups: the theory of group schemes of finite type over a field, volume 170 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017.
  29. I. D. Morris. An inequality for the matrix pressure function and applications. Adv. Math., 302:280–308, 2016.
  30. I. D. Morris. Ergodic properties of matrix equilibrium states. Ergodic Theory Dynam. Systems, 38(6):2295–2320, 2018.
  31. I. D. Morris. Totally ergodic generalised matrix equilibrium states have the Bernoulli property. Comm. Math. Phys., 387(2):995–1050, 2021.
  32. I. D. Morris and Ç. Sert. A converse statement to Hutchinson’s theorem and a dimension gap for self-affine measures. J. Eur. Math. Soc. (JEMS), 25(11):4315–4367, 2023.
  33. I. D. Morris and C. Sert. A variational principle relating self-affine measures to self-affine sets. Preprint, available at arXiv:2303.03437, 2023.
  34. I. D. Morris and P. Shmerkin. On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems. Trans. Amer. Math. Soc., 371(3):1547–1582, 2019.
  35. D. S. Ornstein. On the root problem in ergodic theory. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pages 347–356. Univ. California Press, Berkeley, Calif., 1972.
  36. A. Rapaport. On self-affine measures associated to strongly irreducible and proximal systems. Preprint, available at arXiv:2212.07215, 2022.
  37. A. Rapaport. Dimension of diagonal self-affine sets and measures via non-conformal partitions. Preprint, available at arXiv:2309.03985, 2023.
  38. E. Rossi. Local dimensions of measures on infinitely generated self-affine sets. J. Math. Anal. Appl., 413(2):1030–1039, 2014.
  39. M. Urbański. Hausdorff measures versus equilibrium states of conformal infinite iterated function systems. volume 37, pages 153–205. 1998. International Conference on Dimension and Dynamics (Miskolc, 1998).
  40. P. Walters. An introduction to ergodic theory, volume 79 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com