Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MaRDIFlow: A CSE workflow framework for abstracting meta-data from FAIR computational experiments (2405.00028v1)

Published 28 Feb 2024 in cs.DC

Abstract: Numerical algorithms and computational tools are instrumental in navigating and addressing complex simulation and data processing tasks. The exponential growth of metadata and parameter-driven simulations has led to an increasing demand for automated workflows that can replicate computational experiments across platforms. In general, a computational workflow is defined as a sequential description for accomplishing a scientific objective, often described by tasks and their associated data dependencies. If characterized through input-output relation, workflow components can be structured to allow interchangeable utilization of individual tasks and their accompanying metadata. In the present work, we develop a novel computational framework, namely, MaRDIFlow, that focuses on the automation of abstracting meta-data embedded in an ontology of mathematical objects. This framework also effectively addresses the inherent execution and environmental dependencies by incorporating them into multi-layered descriptions. Additionally, we demonstrate a working prototype with example use cases and methodically integrate them into our workflow tool and data provenance framework. Furthermore, we show how to best apply the FAIR principles to computational workflows, such that abstracted components are Findable, Accessible, Interoperable, and Reusable in nature.

Summary

We haven't generated a summary for this paper yet.