Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type (2404.18767v2)

Published 29 Apr 2024 in cs.CE

Abstract: Electromagneto-quasistatic (EMQS) field formulations are often dubbed as Darwin-type field formulations which approximate the Maxwell equations by neglecting radiation effects while modelling resistive, capacitive, and inductive effects. A common feature of EMQS field models is the Darwin-Amp\'ere equation formulated with the magnetic vector potential and the electric scalar potential. EMQS field formulations yield different approximations to the Maxwell equations by choice of additional gauge equations. These EMQS formulations are analyzed within the port-Hamiltonian system (PHS) framework. It is shown via the PHS compatibility equation that formulations based on the combination of the Darwin-Amp\'ere equation and the full Maxwell continuity equation yield port-Hamiltonian systems implying numerical stability and specific EMQS energy conservation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. IEEE Trans. Magn. 59(5) (2023). 10.1109/TMAG.2023.3244722
  2. Darwin, C.G.: Li. the dynamical motions of charged particles. Phil. Mag. 39, 537 – 551 (1920). 10.1080/14786440508636066
  3. IEEE Trans. Magn. (2023). 10.1109/TMAG.2023.3333943
  4. IEEE Trans. Magn. 58 (2023). 10.1109/TMAG.2022.3187869
  5. IEEE Transactions on Magnetics 44(6), 682–685 (2008). 10.1109/TMAG.2007.915991
  6. Birkhäuser Basel (2012). 10.1007/978-3-0348-0399-1
  7. In: M. Ehrhardt (ed.) Progress in Industrial Mathematics at ECMI 2021, pp. 463–469. Springer International Publishing (2022). 10.1007/978-3-031-11818-0_60
  8. IEEE Trans Magn. pp. 1–4 (2023). 10.1109/TMAG.2023.3304998
  9. In: IEEE CEFC 2020 Conference, Pisa, Italy (2020)
  10. IEEE Trans. Magn. 48(2), 511–514 (2012). 10.1109/TMAG.2011.2173163. URL http://ieeexplore.ieee.org/document/6136654/
  11. Weiland, T.: Time domain electromagnetic field computation with finite difference methods. Int. J. Num. Mod.: ENDF 9, 259–319 (1996). 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8
  12. IEEE Trans Magn. 55(6), 1–5 (2019). 10.1109/TMAG.2019.2899288
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com