Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Geodesic Distance for Intrinsic Minimization on Triangle Meshes (2404.18610v1)

Published 29 Apr 2024 in cs.GR and cs.CG

Abstract: Computing intrinsic distances on discrete surfaces is at the heart of many minimization problems in geometry processing and beyond. Solving these problems is extremely challenging as it demands the computation of on-surface distances along with their derivatives. We present a novel approach for intrinsic minimization of distance-based objectives defined on triangle meshes. Using a variational formulation of shortest-path geodesics, we compute first and second-order distance derivatives based on the implicit function theorem, thus opening the door to efficient Newton-type minimization solvers. We demonstrate our differentiable geodesic distance framework on a wide range of examples, including geodesic networks and membranes on surfaces of arbitrary genus, two-way coupling between hosting surface and embedded system, differentiable geodesic Voronoi diagrams, and efficient computation of Karcher means on complex shapes. Our analysis shows that second-order descent methods based on our differentiable geodesics outperform existing first-order and quasi-Newton methods by large margins.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com