Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semiparametric mean and variance joint models with Laplace link functions for count time series (2404.18421v1)

Published 29 Apr 2024 in stat.ME, math.ST, and stat.TH

Abstract: Count time series data are frequently analyzed by modeling their conditional means and the conditional variance is often considered to be a deterministic function of the corresponding conditional mean and is not typically modeled independently. We propose a semiparametric mean and variance joint model, called random rounded count-valued generalized autoregressive conditional heteroskedastic (RRC-GARCH) model, to address this limitation. The RRC-GARCH model and its variations allow for the joint modeling of both the conditional mean and variance and offer a flexible framework for capturing various mean-variance structures (MVSs). One main feature of this model is its ability to accommodate negative values for regression coefficients and autocorrelation functions. The autocorrelation structure of the RRC-GARCH model using the proposed Laplace link functions with nonnegative regression coefficients is the same as that of an autoregressive moving-average (ARMA) process. For the new model, the stationarity and ergodicity are established and the consistency and asymptotic normality of the conditional least squares estimator are proved. Model selection criteria are proposed to evaluate the RRC-GARCH models. The performance of the RRC-GARCH model is assessed through analyses of both simulated and real data sets. The results indicate that the model can effectively capture the MVS of count time series data and generate accurate forecast means and variances.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com