Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Interatomic Potentials with Keras API (2404.18393v1)

Published 29 Apr 2024 in physics.comp-ph and cond-mat.dis-nn

Abstract: A neural network is used to train, predict, and evaluate a model to calculate the energies of 3-dimensional systems composed of Ti and O atoms. Python classes are implemented to quantify atomic interactions through symmetry functions and to specify prediction algorithms. The hyperparameters of the model are optimised by minimising validation RMSE, which then produced a model that is accurate to within 100 eV. The model could be improved by proper testing of symmetry function calculations and addressing properties of features and targets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (6)
  1. J.-L. Bretonnet, Basics of the density functional theory, AIMS Materials Science 4, 1372 (2017).
  2. W. Hu and M. Chen, Editorial: Advances in density functional theory and beyond for computational chemistry, Frontiers in Chemistry 9, 10.3389/fchem.2021.705762 (2021).
  3. J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98, 146401 (2007).
  4. N. Artrith and A. Urban, An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for tio2, Computational Materials Science 114, 135 (2016).
  5. J. P. Rili, Machine Learning Interatomic Potentials with Keras API.
  6. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017), arXiv:1412.6980 [cs.LG] .

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com