Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some Computational Results on Koszul-Vinberg Cochain Complexes (2404.18344v1)

Published 29 Apr 2024 in math.DG, cs.IT, and math.IT

Abstract: An affine connection is said to be flat if its curvature tensor vanishes identically. Koszul-Vinberg (KV for abbreviation) cohomology has been invoked to study the deformation theory of flat and torsion-free affine connections on tangent bundle. In this Note, we compute explicitly the differentials of various specific KV cochains, and study their relation to classical objects in information geometry, including deformations associated with projective and dual-projective transformations of a flat and torsion-free affine connection. As an application, we also give a simple yet non-trivial example of a KV algebra of which second cohomology group does not vanish.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com