Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GNarsil: Splitting Stabilizers into Gauges (2404.18302v1)

Published 28 Apr 2024 in quant-ph and cs.ET

Abstract: Quantum subsystem codes have been shown to improve error-correction performance, ease the implementation of logical operations on codes, and make stabilizer measurements easier by decomposing stabilizers into smaller-weight gauge operators. In this paper, we present two algorithms that produce new subsystem codes from a "seed" CSS code. They replace some stabilizers of a given CSS code with smaller-weight gauge operators that split the remaining stabilizers, while being compatible with the logical Pauli operators of the code. The algorithms recover the well-known Bacon-Shor code computationally as well as produce a new $\left[\left[ 9,1,2,2 \right]\right]$ rotated surface subsystem code with weight-$3$ gauges and weight-$4$ stabilizers. We illustrate using a $\left[\left[ 100,25,3 \right]\right]$ subsystem hypergraph product (SHP) code that the algorithms can produce more efficient gauge operators than the closed-form expressions of the SHP construction. However, we observe that the stabilizers of the lifted product quantum LDPC codes are more challenging to split into small-weight gauge operators. Hence, we introduce the subsystem lifted product (SLP) code construction and develop a new $\left[\left[ 775, 124, 20 \right]\right]$ code from Tanner's classical quasi-cyclic LDPC code. The code has high-weight stabilizers but all gauge operators that split stabilizers have weight $5$, except one. In contrast, the LP stabilizer code from Tanner's code has parameters $\left[\left[ 1054, 124, 20 \right]\right]$. This serves as a novel example of new subsystem codes that outperform stabilizer versions of them. Finally, based on our experiments, we share some general insights about non-locality's effects on the performance of splitting stabilizers into small-weight gauges.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. D. Kribs, R. Laflamme, and D. Poulin, “Unified and generalized approach to quantum error correction,” Physical review letters, vol. 94, no. 18, p. 180501, 2005. [Online]. Available: https://arxiv.org/abs/quant-ph/0412076
  2. D. Bacon, “Operator quantum error-correcting subsystems for self-correcting quantum memories,” Physical Review A, vol. 73, no. 1, p. 012340, 2006. [Online]. Available: https://arxiv.org/abs/quant-ph/0506023
  3. N. P. Breuckmann, “Quantum subsystem codes: Their theory and use,” 2011.
  4. J. Huang, S. M. Li, L. Yeh, A. Kissinger, M. Mosca, and M. Vasmer, “Graphical CSS code transformation using ZX calculus,” arXiv preprint arXiv:2307.02437, 2023. [Online]. Available: https://arxiv.org/abs/2307.02437
  5. O. Higgott and N. P. Breuckmann, “Subsystem codes with high thresholds by gauge fixing and reduced qubit overhead,” Physical Review X, vol. 11, no. 3, p. 031039, 2021. [Online]. Available: https://arxiv.org/abs/2010.09626
  6. M. Li and T. J. Yoder, “A numerical study of Bravyi-Bacon-Shor and subsystem hypergraph product codes,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).   IEEE, 2020, pp. 109–119. [Online]. Available: https://arxiv.org/abs/2002.06257
  7. M. M. Wilde, “Logical operators of quantum codes,” Physical Review A, vol. 79, no. 6, p. 062322, 2009. [Online]. Available: https://arxiv.org/abs/0903.5256
  8. G. M. Crosswhite and D. Bacon, “Automated searching for quantum subsystem codes,” Physical Review A, vol. 83, no. 2, p. 022307, 2011. [Online]. Available: https://arxiv.org/abs/1009.2203
  9. S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara, “Subsystem surface codes with three-qubit check operators,” Quant. Inf. Comp., vol. 13, pp. 0963–0985, 2013. [Online]. Available: https://arxiv.org/abs/1207.1443
  10. N. Rengaswamy, R. Calderbank, S. Kadhe, and H. D. Pfister, “Logical Clifford synthesis for stabilizer codes,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–17, 2020. [Online]. Available: https://arxiv.org/abs/1907.00310
  11. S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Physical Review A, vol. 70, no. 5, p. 052328, 2004. [Online]. Available: https://arxiv.org/abs/quant-ph/0406196
  12. J. Dehaene and B. De Moor, “Clifford group, stabilizer states, and linear and quadratic operations over GF(2),” Physical Review A, vol. 68, no. 4, p. 042318, 2003. [Online]. Available: https://arxiv.org/abs/quant-ph/0304125
  13. W. E. Ryan et al., “An introduction to LDPC codes,” CRC Handbook for Coding and Signal Processing for Recording Systems, vol. 5, no. 2, pp. 1–23, 2004.
  14. P. Panteleev and G. Kalachev, “Quantum LDPC codes with almost linear minimum distance,” IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 213–229, 2021. [Online]. Available: https://arxiv.org/abs/2012.04068
  15. N. Raveendran, N. Rengaswamy, F. Rozpędek, A. Raina, L. Jiang, and B. Vasić, “Finite rate QLDPC-GKP coding scheme that surpasses the CSS hamming bound,” Quantum, vol. 6, p. 767, 2022. [Online]. Available: https://arxiv.org/abs/2111.07029
  16. R. Smarandache, A. Gómez-Fonseca, and D. G. Mitchell, “Using minors to construct generator matrices for quasi-cyclic ldpc codes,” in 2022 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2022, pp. 548–553.
  17. H. Chimal-Dzul, J. Lieb, and J. Rosenthal, “Generator matrices of quasi-cyclic codes over extension fields obtained from Gröbner basis,” IFAC-PapersOnLine, vol. 55, no. 30, pp. 61–66, 2022.
  18. M. B. Hastings and J. Haah, “Dynamically generated logical qubits,” Quantum, vol. 5, p. 564, 2021. [Online]. Available: https://arxiv.org/abs/2107.02194
  19. M. Davydova, N. Tantivasadakarn, and S. Balasubramanian, “Floquet codes without parent subsystem codes,” PRX Quantum, vol. 4, no. 2, p. 020341, 2023. [Online]. Available: https://arxiv.org/abs/2210.02468

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com