Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability for binary scalar products (2404.17933v1)

Published 27 Apr 2024 in math.CO and cs.DM

Abstract: Bohn, Faenza, Fiorini, Fisikopoulos, Macchia, and Pashkovich (2015) conjectured that 2-level polytopes cannot simultaneously have many vertices and many facets, namely, that the maximum of the product of the number of vertices and facets is attained on the cube and cross-polytope. This was proved in a recent work by Kupavskii and Weltge. In this paper, we resolve a strong version of the conjecture by Bohn et al., and find the maximum possible product of the number of vertices and the number of facets in a 2-level polytope that is not affinely isomorphic to the cube or the cross-polytope. To do this, we get a sharp stability result of Kupavskii and Weltge's upper bound on $\left|\mathcal A\right|\cdot\left|\mathcal B\right|$ for $\mathcal A,\mathcal B \subseteq \mathbb Rd$ with a property that $\forall a \in \mathcal A, b \in \mathcal B$ the scalar product $\langle a, b\rangle \in{0,1}$.

Summary

We haven't generated a summary for this paper yet.