Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utilizing Large Language Models to Identify Reddit Users Considering Vaping Cessation for Digital Interventions (2404.17607v1)

Published 25 Apr 2024 in cs.IR, cs.AI, cs.CL, cs.LG, and cs.SI

Abstract: The widespread adoption of social media platforms globally not only enhances users' connectivity and communication but also emerges as a vital channel for the dissemination of health-related information, thereby establishing social media data as an invaluable organic data resource for public health research. The surge in popularity of vaping or e-cigarette use in the United States and other countries has caused an outbreak of e-cigarette and vaping use-associated lung injury (EVALI), leading to hospitalizations and fatalities in 2019, highlighting the urgency to comprehend vaping behaviors and develop effective strategies for cession. In this study, we extracted a sample dataset from one vaping sub-community on Reddit to analyze users' quit vaping intentions. Leveraging LLMs including both the latest GPT-4 and traditional BERT-based LLMs for sentence-level quit-vaping intention prediction tasks, this study compares the outcomes of these models against human annotations. Notably, when compared to human evaluators, GPT-4 model demonstrates superior consistency in adhering to annotation guidelines and processes, showcasing advanced capabilities to detect nuanced user quit-vaping intentions that human evaluators might overlook. These preliminary findings emphasize the potential of GPT-4 in enhancing the accuracy and reliability of social media data analysis, especially in identifying subtle users' intentions that may elude human detection.

Summary

We haven't generated a summary for this paper yet.