Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CEM-GMsFEM for Poisson equations in heterogeneous perforated domains (2404.17372v1)

Published 26 Apr 2024 in math.NA and cs.NA

Abstract: In this paper, we propose a novel multiscale model reduction strategy tailored to address the Poisson equation within heterogeneous perforated domains. The numerical simulation of this intricate problem is impeded by its multiscale characteristics, necessitating an exceptionally fine mesh to adequately capture all relevant details. To overcome the challenges inherent in the multiscale nature of the perforations, we introduce a coarse space constructed using the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). This involves constructing basis functions through a sequence of local energy minimization problems over eigenspaces containing localized information pertaining to the heterogeneities. Through our analysis, we demonstrate that the oversampling layers depend on the local eigenvalues, thereby implicating the local geometry as well. Additionally, we provide numerical examples to illustrate the efficacy of the proposed scheme.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com