Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Spike Transformer Network for Depth Estimation from Event Cameras via Cross-modality Knowledge Distillation (2404.17335v3)

Published 26 Apr 2024 in cs.CV and cs.AI

Abstract: Depth estimation is a critical task in computer vision, with applications in autonomous navigation, robotics, and augmented reality. Event cameras, which encode temporal changes in light intensity as asynchronous binary spikes, offer unique advantages such as low latency, high dynamic range, and energy efficiency. However, their unconventional spiking output and the scarcity of labelled datasets pose significant challenges to traditional image-based depth estimation methods. To address these challenges, we propose a novel energy-efficient Spike-Driven Transformer Network (SDT) for depth estimation, leveraging the unique properties of spiking data. The proposed SDT introduces three key innovations: (1) a purely spike-driven transformer architecture that incorporates spike-based attention and residual mechanisms, enabling precise depth estimation with minimal energy consumption; (2) a fusion depth estimation head that combines multi-stage features for fine-grained depth prediction while ensuring computational efficiency; and (3) a cross-modality knowledge distillation framework that utilises a pre-trained vision foundation model (DINOv2) to enhance the training of the spiking network despite limited data availability.This work represents the first exploration of transformer-based spiking neural networks for depth estimation, providing a significant step forward in energy-efficient neuromorphic computing for real-world vision applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets