Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-Reversal Anomalies of QCD$_3$ and QED$_3$ (2404.17233v2)

Published 26 Apr 2024 in hep-th and cond-mat.str-el

Abstract: Anomalies of global symmetry provide powerful tool to constrain the dynamics of quantum systems, such as anomaly matching in the renormalization group flow and obstruction to symmetric mass generation. In this note we compute the anomalies in 2+1d time-reversal symmetric gauge theories with massless fermions in the fundamental and rank-two tensor representations, where the gauge groups are $SU(N),SO(N),Sp(N),U(1)$. The fermion parity is part of the gauge group and the theories are bosonic. The time-reversal symmetry satisfies $T2=1$ or $T2={\cal M}$ where ${\cal M}$ is an internal magnetic symmetry. We show that some of the bosonic gauge theories have time-reversal anomaly with $c_-\neq 0$ mod 8 that is absent in fermionic systems. The anomalies of the gauge theories can be nontrivial even when the number of Majorana fermions is a multiple of 16 and $\nu=0$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, “Deconfined quantum critical points,” Science 303 no. 5663, (Mar., 2004) 1490–1494. http://dx.doi.org/10.1126/science.1091806.
  2. C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and T. Senthil, “Deconfined quantum critical points: symmetries and dualities,” Phys. Rev. X 7 no. 3, (2017) 031051, arXiv:1703.02426 [cond-mat.str-el].
  3. Y.-Z. You, Y.-C. He, C. Xu, and A. Vishwanath, “Symmetric fermion mass generation as deconfined quantum criticality,” Phys. Rev. X 8 (Feb, 2018) 011026. https://link.aps.org/doi/10.1103/PhysRevX.8.011026.
  4. D. Tong, “Comments on symmetric mass generation in 2d and 4d,” JHEP 07 (2022) 001, arXiv:2104.03997 [hep-th].
  5. J. Wang and Y.-Z. You, “Symmetric Mass Generation,” Symmetry 14 no. 7, (2022) 1475, arXiv:2204.14271 [cond-mat.str-el].
  6. J. Gomis, Z. Komargodski, and N. Seiberg, “Phases Of Adjoint QCD3 And Dualities,” SciPost Phys. 5 no. 1, (2018) 007, arXiv:1710.03258 [hep-th].
  7. C. Córdova, P.-S. Hsin, and N. Seiberg, “Time-Reversal Symmetry, Anomalies, and Dualities in (2+1)d𝑑ditalic_d,” SciPost Phys. 5 no. 1, (2018) 006, arXiv:1712.08639 [cond-mat.str-el].
  8. D. Delmastro, J. Gomis, P.-S. Hsin, and Z. Komargodski, “Anomalies and Symmetry Fractionalization,” arXiv:2206.15118 [hep-th].
  9. C. Wang and M. Levin, “Anomaly indicators for time-reversal symmetric topological orders,” Phys. Rev. Lett. 119 no. 13, (2017) 136801, arXiv:1610.04624 [cond-mat.str-el].
  10. M. Barkeshli, P. Bonderson, C.-M. Jian, M. Cheng, and K. Walker, “Reflection and time reversal symmetry enriched topological phases of matter: path integrals, non-orientable manifolds, and anomalies,” Commun. Math. Phys. 374 no. 2, (2019) 1021–1124, arXiv:1612.07792 [cond-mat.str-el].
  11. Y. Tachikawa and K. Yonekura, “On time-reversal anomaly of 2+1d topological phases,” PTEP 2017 no. 3, (2017) 033B04, arXiv:1610.07010 [hep-th].
  12. Y. Tachikawa and K. Yonekura, “More on time-reversal anomaly of 2+1d topological phases,” Phys. Rev. Lett. 119 no. 11, (2017) 111603, arXiv:1611.01601 [hep-th].
  13. C. Cordova, P.-S. Hsin, and C. Zhang, “Anomalies of Non-Invertible Symmetries in (3+1)d,” arXiv:2308.11706 [hep-th].
  14. A. Debray, W. Ye, and M. Yu, “Bosonization and Anomaly Indicators of (2+1)-D Fermionic Topological Orders,” arXiv:2312.13341 [math-ph].
  15. Z. Komargodski and N. Seiberg, “A symmetry breaking scenario for QCD3,” JHEP 01 (2018) 109, arXiv:1706.08755 [hep-th].
  16. C. Choi, D. Delmastro, J. Gomis, and Z. Komargodski, “Dynamics of QCD3 with Rank-Two Quarks And Duality,” JHEP 03 (2020) 078, arXiv:1810.07720 [hep-th].
  17. A. Kapustin, “Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology,” arXiv:1403.1467 [cond-mat.str-el].
  18. C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, “Comments on Chern-Simons Contact Terms in Three Dimensions,” JHEP 09 (2012) 091, arXiv:1206.5218 [hep-th].
  19. A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, “Fermionic Symmetry Protected Topological Phases and Cobordisms,” JHEP 12 (2015) 052, arXiv:1406.7329 [cond-mat.str-el].
  20. L. Fidkowski, X. Chen, and A. Vishwanath, “Non-abelian topological order on the surface of a 3d topological superconductor from an exactly solved model,”. https://arxiv.org/abs/1305.5851.
  21. C. Wang and T. Senthil, “Interacting fermionic topological insulators/superconductors in three dimensions,” Physical Review B 89 no. 19, (May, 2014) . https://doi.org/10.1103%2Fphysrevb.89.195124.
  22. M. A. Metlitski, L. Fidkowski, X. Chen, and A. Vishwanath, “Interaction effects on 3d topological superconductors: surface topological order from vortex condensation, the 16 fold way and fermionic kramers doublets,” 2014. https://arxiv.org/abs/1406.3032.
  23. A. Y. Kitaev, “Homotopy-theoretic approach to spt phases in action: ℤ16subscriptℤ16\mathbb{Z}_{16}blackboard_Z start_POSTSUBSCRIPT 16 end_POSTSUBSCRIPT classification of three-dimensional superconductors.” Lecture notes available at http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015, 2015.
  24. E. Witten, “Fermion Path Integrals And Topological Phases,” Rev. Mod. Phys. 88 no. 3, (2016) 035001, arXiv:1508.04715 [cond-mat.mes-hall].
  25. M. F. Atiyah, V. K. Patodi, and I. M. Singer, “Spectral asymmetry and riemannian geometry. i,” Mathematical Proceedings of the Cambridge Philosophical Society 77 no. 1, (1975) 43–69.
  26. F. Benini, P.-S. Hsin, and N. Seiberg, “Comments on global symmetries, anomalies, and duality in (2 + 1)d,” JHEP 04 (2017) 135, arXiv:1702.07035 [cond-mat.str-el].
  27. M. Cheng, P.-S. Hsin, and C.-M. Jian, “Gauging Lie group symmetry in (2+1)d topological phases,” arXiv:2205.15347 [cond-mat.str-el].
  28. E. Witten, “The ”Parity” Anomaly On An Unorientable Manifold,” Phys. Rev. B 94 no. 19, (2016) 195150, arXiv:1605.02391 [hep-th].
  29. Annals of mathematics studies. Princeton University Press, 1974. https://books.google.com/books?id=5zQ9AFk1i4EC.
  30. E. H. Brown, “The cohomology of $bso_n$ and $bo_n$ with integer coefficients,” Proceedings of the American Mathematical Society 85 no. 2, (2024/04/19/, 1982) 283–288. https://doi.org/10.2307/2044298. Full publication date: Jun., 1982.
  31. C. Cordova, P.-S. Hsin, and N. Seiberg, “Global Symmetries, Counterterms, and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups,” SciPost Phys. 4 no. 4, (2018) 021, arXiv:1711.10008 [hep-th].
  32. W. Browder, “The Kervaire Invariant of Framed Manifolds and its Generalization,” Annals of Mathematics 90 no. 1, (1969) 157–186. http://www.jstor.org/stable/1970686.
  33. P.-S. Hsin, W. Ji, and C.-M. Jian, “Exotic invertible phases with higher-group symmetries,” SciPost Phys. 12 no. 2, (2022) 052, arXiv:2105.09454 [cond-mat.str-el].
  34. X.-Y. Song, Y.-C. He, A. Vishwanath, and C. Wang, “From spinon band topology to the symmetry quantum numbers of monopoles in dirac spin liquids,” Phys. Rev. X 10 (Feb, 2020) 011033. https://link.aps.org/doi/10.1103/PhysRevX.10.011033.
  35. Y. Zhang, X.-Y. Song, and T. Senthil, “Dirac spin liquid as an ”unnecessary” quantum critical point on square lattice antiferromagnets,” arXiv:2404.11654 [cond-mat.str-el].
  36. A. Kapustin, “Bosonic Topological Insulators and Paramagnets: a view from cobordisms,” arXiv:1404.6659 [cond-mat.str-el].
  37. P.-S. Hsin and N. Seiberg, “Level/rank Duality and Chern-Simons-Matter Theories,” JHEP 09 (2016) 095, arXiv:1607.07457 [hep-th].
  38. O. Aharony, F. Benini, P.-S. Hsin, and N. Seiberg, “Chern-Simons-matter dualities with S⁢O𝑆𝑂SOitalic_S italic_O and U⁢S⁢p𝑈𝑆𝑝USpitalic_U italic_S italic_p gauge groups,” JHEP 02 (2017) 072, arXiv:1611.07874 [cond-mat.str-el].
  39. P.-S. Hsin and S.-H. Shao, “Lorentz Symmetry Fractionalization and Dualities in (2+1)d,” SciPost Phys. 8 (2020) 018, arXiv:1909.07383 [cond-mat.str-el].
  40. X.-G. Wen, “Construction of bosonic symmetry-protected-trivial states and their topological invariants via G×S⁢O⁢(∞)𝐺𝑆𝑂G\times SO(\infty)italic_G × italic_S italic_O ( ∞ ) non-linear σ𝜎\sigmaitalic_σ-models,” Phys. Rev. B 91 (2015) 205101, arXiv:1410.8477 [cond-mat.str-el].
  41. W. T. Wu, “On Pontrjagin classes. III,” Acta Mathematica Sinica, Chinese Series 4 no. 3, (1954) 323–346. https://actamath.cjoe.ac.cn/Jwk_sxxb_cn/EN/10.12386/A1954sxxb0022.

Summary

We haven't generated a summary for this paper yet.