Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distinguishing charged lepton flavor violation scenarios with inelastic $μ\rightarrow e$ conversion (2404.17166v2)

Published 26 Apr 2024 in hep-ph and nucl-th

Abstract: The Mu2e and COMET experiments are expected to improve existing limits on charged lepton flavor violation (CLFV) by roughly four orders of magnitude. $\mu\rightarrow e$ conversion experiments are typically optimized for electrons produced without nuclear excitation, as this maximizes the electron energy and minimizes backgrounds from the free decay of the muon. Here we argue that Mu2e and COMET will be able to extract additional constraints on CLFV from inelastic $\mu \rightarrow e$ conversion, given the ${27}$Al target they have chosen and backgrounds they anticipate. We describe CLFV scenarios in which inelastic CLFV can induce measurable distortions in the near-endpoint spectrum of conversion electrons, including cases where certain contributing operators cannot be probed in elastic $\mu \rightarrow e$ conversion. We extend the nonrelativistic EFT treatment of elastic $\mu \rightarrow e$ conversion to include the new nuclear operators needed for the inelastic process, evaluate the associated nuclear response functions, and describe several new-physics scenarios where the inelastic process can provide additional information on CLFV.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. R. Barbieri and L.J. Hall. Signals for supersymmetric unification. Physics Letters B, 338(2):212–218, 1994. ISSN 0370-2693. doi: https://doi.org/10.1016/0370-2693(94)91368-4. URL https://www.sciencedirect.com/science/article/pii/0370269394913684.
  2. Charged Lepton Flavor Violation: An Experimenter’s Guide. Phys. Rept., 532:27–64, 2013. doi: 10.1016/j.physrep.2013.07.002.
  3. Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction. Riv. Nuovo Cim., 41(2):71–174, 2018. doi: 10.1393/ncr/i2018-10144-0.
  4. Wilhelm H. Bertl et al. A Search for muon to electron conversion in muonic gold. Eur. Phys. J. C, 47:337–346, 2006. doi: 10.1140/epjc/s2006-02582-x.
  5. Robert H. Bernstein. The mu2e experiment. Frontiers in Physics, 7:1, Jan 2019. ISSN 2296-424X. doi: 10.3389/fphy.2019.00001. URL http://dx.doi.org/10.3389/fphy.2019.00001.
  6. MyeongJae Lee. Comet muon conversion experiment in j-parc. Frontiers in Physics, 6:133, 2018. ISSN 2296-424X. doi: 10.3389/fphy.2018.00133. URL https://www.frontiersin.org/article/10.3389/fphy.2018.00133.
  7. S. Weinberg and G. Feinberg. Electromagnetic transitions between μ𝜇\muitalic_μ meson and electron. Phys. Rev. Lett., 3:111–114, Jul 1959. doi: 10.1103/PhysRevLett.3.111. URL https://link.aps.org/doi/10.1103/PhysRevLett.3.111.
  8. Study of the flavour violating (μ−superscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT,e−superscript𝑒e^{-}italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT) conversion in nuclei. Nuclear Physics A, 510(4):641–670, 1990. ISSN 0375-9474. doi: https://doi.org/10.1016/0375-9474(90)90353-N. URL https://www.sciencedirect.com/science/article/pii/037594749090353N.
  9. Coherent and incoherent (μ−superscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, e−superscript𝑒e^{-}italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT) conversion in nuclei. Nuclear Physics A, 559(4):526–542, 1993. ISSN 0375-9474. doi: https://doi.org/10.1016/0375-9474(93)90259-Z. URL https://www.sciencedirect.com/science/article/pii/037594749390259Z.
  10. Study of the muon number violating (μ−superscript𝜇\mu^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, e−superscript𝑒e^{-}italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT) conversion in a nucleus by using quasi-particle rpa. Nuclear Physics A, 570(3):637–656, 1994. ISSN 0375-9474. doi: https://doi.org/10.1016/0375-9474(94)90077-9. URL https://www.sciencedirect.com/science/article/pii/0375947494900779.
  11. Realistic nuclear matrix elements for the lepton-flavor violating μ−→e−→superscript𝜇superscript𝑒{\mu}^{-}\rightarrow{e}^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT conversion in Al27superscriptAl27{}^{27}\mathrm{Al}start_FLOATSUPERSCRIPT 27 end_FLOATSUPERSCRIPT roman_Al and Ti48superscriptTi48{}^{48}\mathrm{Ti}start_FLOATSUPERSCRIPT 48 end_FLOATSUPERSCRIPT roman_Ti. Phys. Rev. C, 62:035502, Aug 2000. doi: 10.1103/PhysRevC.62.035502. URL https://link.aps.org/doi/10.1103/PhysRevC.62.035502.
  12. T.S. Kosmas. Exotic μ−→e−→superscript𝜇superscript𝑒\mu^{-}\rightarrow e^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT conversion in nuclei: energy moments of the transition strength and average energy of the outgoing e−superscript𝑒e^{-}italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT. Nuclear Physics A, 683(1):443–462, 2001. ISSN 0375-9474. doi: https://doi.org/10.1016/S0375-9474(00)00471-1. URL https://www.sciencedirect.com/science/article/pii/S0375947400004711.
  13. O. Civitarese and T. Tarutina. Multipole decomposition of the rate of muon-to-electron (μ−⟶e−)⟶superscript𝜇superscript𝑒({\mu}^{-}\longrightarrow{e}^{-})( italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ⟶ italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) conversion in Pb208superscriptPb208{}^{208}\mathrm{Pb}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPT roman_Pb. Phys. Rev. C, 99:065504, Jun 2019. doi: 10.1103/PhysRevC.99.065504. URL https://link.aps.org/doi/10.1103/PhysRevC.99.065504.
  14. Muon decay in orbit: Spectrum of high-energy electrons. Phys. Rev. D, 84:013006, Jul 2011. doi: 10.1103/PhysRevD.84.013006. URL https://link.aps.org/doi/10.1103/PhysRevD.84.013006.
  15. High-energy electrons from the muon decay in orbit: Radiative corrections. Physics Letters B, 753:61–64, 2016a. ISSN 0370-2693. doi: https://doi.org/10.1016/j.physletb.2015.12.008. URL https://www.sciencedirect.com/science/article/pii/S0370269315009399.
  16. Bound muon decay spectrum in the leading logarithmic accuracy. Phys. Rev. D, 94:051301, Sep 2016b. doi: 10.1103/PhysRevD.94.051301. URL https://link.aps.org/doi/10.1103/PhysRevD.94.051301.
  17. L. Bartoszek et al. Mu2e Technical Design Report. 10 2014. doi: 10.2172/1172555.
  18. F. Abdi et al. Mu2e Run I Sensitivity Projections for the Neutrinoless μ−→e−→superscript𝜇superscript𝑒\mu^{-}\to e^{-}italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Conversion Search in Aluminum. Universe, 9(1):54, 2023. doi: 10.3390/universe9010054.
  19. Nuclear-Level Effective Theory of μ𝜇\muitalic_μ→e Conversion. Phys. Rev. Lett., 130(13):131901, 2023. doi: 10.1103/PhysRevLett.130.131901.
  20. Nuclear-level effective theory of μ𝜇\muitalic_μ→e conversion: Formalism and applications. Phys. Rev. C, 107(3):035504, 2023. doi: 10.1103/PhysRevC.107.035504.
  21. Nuclear-level effective theory of μ→e→𝜇𝑒\mu\rightarrow eitalic_μ → italic_e conversion: Inelastic case. In prep., 2024.
  22. New “usd” hamiltonians for the 𝑠𝑑𝑠𝑑\mathit{sd}italic_sd shell. Phys. Rev. C, 74:034315, Sep 2006. doi: 10.1103/PhysRevC.74.034315. URL https://link.aps.org/doi/10.1103/PhysRevC.74.034315.
  23. Status of the nuclear shell model. Annual Review of Nuclear and Particle Science, 38(1):29–66, 1988. doi: 10.1146/annurev.ns.38.120188.000333. URL https://doi.org/10.1146/annurev.ns.38.120188.000333.
  24. Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei. Phys. Rev. D, 66:096002, 2002. doi: 10.1103/PhysRevD.76.059902. [Erratum: Phys.Rev.D 76, 059902 (2007)].
  25. On the model discriminating power of mu —>>> e conversion in nuclei. Phys. Rev. D, 80:013002, 2009. doi: 10.1103/PhysRevD.80.013002.
  26. Renormalisation-group improved analysis of μ→e→𝜇𝑒\mu\to eitalic_μ → italic_e processes in a systematic effective-field-theory approach. JHEP, 05:117, 2017. doi: 10.1007/JHEP05(2017)117.
  27. Coherent μ−e𝜇𝑒\mu-eitalic_μ - italic_e conversion at next-to-leading order. Phys. Rev. C, 98(1):015208, 2018. doi: 10.1103/PhysRevC.98.015208.
  28. Selecting μ→e→𝜇𝑒\mu\rightarrow eitalic_μ → italic_e conversion targets to distinguish lepton flavour-changing operators. Physics Letters B, 790:380–388, 2019. ISSN 0370-2693. doi: https://doi.org/10.1016/j.physletb.2019.01.042. URL https://www.sciencedirect.com/science/article/pii/S0370269319300589.
  29. Isotope dependence of muon-to-electron conversion. Nuclear Physics B, 980:115833, 2022. ISSN 0550-3213. doi: https://doi.org/10.1016/j.nuclphysb.2022.115833. URL https://www.sciencedirect.com/science/article/pii/S0550321322001845.
  30. Next-to-leading order scalar contributions to μ𝜇\muitalic_μ→e conversion. Phys. Rev. C, 105(5):055504, 2022. doi: 10.1103/PhysRevC.105.055504.
  31. A New Determination of the (Z,A) Dependence of Coherent Muon-to-Electron Conversion. 1 2024.
  32. Spin-dependent μ→e→𝜇𝑒\mu\to eitalic_μ → italic_e conversion. Phys. Lett. B, 771:242–246, 2017. doi: 10.1016/j.physletb.2017.05.053.
  33. “Spin-dependent” μ→e→𝜇𝑒{\mu\rightarrow e}italic_μ → italic_e conversion on light nuclei. Eur. Phys. J. C, 78(2):109, 2018. doi: 10.1140/epjc/s10052-018-5584-8.
  34. Axionlike-particle contributions to the μ𝜇\muitalic_μ→e conversion. Phys. Rev. D, 109(7):075014, 2024. doi: 10.1103/PhysRevD.109.075014.
  35. Effective theory predictions for μ→e→𝜇𝑒\mu\rightarrow eitalic_μ → italic_e. In Prep., 2024.
  36. F. Abusalma et al. Expression of Interest for Evolution of the Mu2e Experiment. 2 2018.
  37. K. Byrum et al. Mu2e-II: Muon to electron conversion with PIP-II. In Snowmass 2021, 3 2022.

Summary

We haven't generated a summary for this paper yet.