Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Toward Automated Formation of Composite Micro-Structures Using Holographic Optical Tweezers (2404.17045v1)

Published 25 Apr 2024 in eess.SY, cs.RO, and cs.SY

Abstract: Holographic Optical Tweezers (HOT) are powerful tools that can manipulate micro and nano-scale objects with high accuracy and precision. They are most commonly used for biological applications, such as cellular studies, and more recently, micro-structure assemblies. Automation has been of significant interest in the HOT field, since human-run experiments are time-consuming and require skilled operator(s). Automated HOTs, however, commonly use point traps, which focus high intensity laser light at specific spots in fluid media to attract and move micro-objects. In this paper, we develop a novel automated system of tweezing multiple micro-objects more efficiently using multiplexed optical traps. Multiplexed traps enable the simultaneous trapping of multiple beads in various alternate multiplexing formations, such as annular rings and line patterns. Our automated system is realized by augmenting the capabilities of a commercially available HOT with real-time bead detection and tracking, and wavefront-based path planning. We demonstrate the usefulness of the system by assembling two different composite micro-structures, comprising 5 $\mu m$ polystyrene beads, using both annular and line shaped traps in obstacle-rich environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. S. Rancourt-Grenier, M.-T. Wei, J.-J. Bai, A. Chiou, P. P. Bareil, P.-L. Duval, and Y. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express, vol. 18, no. 10, pp. 10 462–10 472, May 2010.
  2. A. Bezryadina, J. Keith, J. Chen, and Z. Chen, “Optical manipulation of rod-shaped bacteria and adhesive cellular clusters with novel “tug-of-war” optical tweezers,” in Conf. Lasers Electro-Optics (CLEO) - Laser Sci. Photonic Applications, 2014, pp. 1–2.
  3. M. Xie, Y. Wang, G. Feng, and D. Sun, “Automated pairing manipulation of biological cells with a robot-tweezers manipulation system,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 5, pp. 2242–2251, 2015.
  4. M. Xie, J. K. Mills, Y. Wang, M. Mahmoodi, and D. Sun, “Automated translational and rotational control of biological cells with a robot-aided optical tweezers manipulation system,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 543–551, 2016.
  5. S. Hu, S. Chen, S. Chen, G. Xu, and D. Sun, “Automated transportation of multiple cell types using a robot-aided cell manipulation system with holographic optical tweezers,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 2, pp. 804–814, 2017.
  6. X. Li and C. C. Cheah, “A simple trapping and manipulation method of biological cell using robot-assisted optical tweezers: Singular perturbation approach,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1656–1663, 2017.
  7. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express, vol. 12, no. 6, pp. 1144–1149, Mar 2004.
  8. A. G. Banerjee, A. Pomerance, W. Losert, and S. K. Gupta, “Developing a stochastic dynamic programming framework for optical tweezer-based automated particle transport operations,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 2, pp. 218–227, 2010.
  9. A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Real-time path planning for coordinated transport of multiple particles using optical tweezers,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 4, pp. 669–678, 2012.
  10. S. Chizari, M. P. Lim, L. A. Shaw, S. P. Austin, and J. B. Hopkins, “Automated optical-tweezers assembly of engineered microgranular crystals,” Small, vol. 16, no. 25, p. 2000314, 2020.
  11. J. Melzer and E. Mcleod, “Assembly of multicomponent structures from hundreds of micron-scale building blocks using optical tweezers,” Microsyst. Nanoeng., vol. 7, p. 45, 06 2021.
  12. A. Banerjee, S. Chowdhury, and S. K. Gupta, “Optical tweezers: Autonomous robots for the manipulation of biological cells,” IEEE Robot. Autom. Mag., vol. 21, no. 3, pp. 81–88, 2014.
  13. M. Xie, A. Shakoor, and C. Wu, “Manipulation of biological cells using a robot-aided optical tweezers system,” Micromachines, vol. 9, no. 5, 2018.
  14. Y. Ren, M. Keshavarz, S. Anastasova, G. Hatami, B. Lo, and D. Zhang, “Machine learning-based real-time localization and automatic trapping of multiple microrobots in optical tweezer,” in Int. Conf. Manipulation Autom. Robot. Small Scales (MARSS), 2022, pp. 1–6.
  15. X. Li and D. Sun, “Automated in-vivo transportation control of biological cells using robot-aided optical tweezers,” in Autonomous Robot-Aided Optical Manipulation for Biological Cells, 2021, pp. 93–113.
  16. G. Pesce, P. H. Jones, O. M. Maragò, and G. Volpe, “Optical tweezers: Theory and practice,” Eur. Phys. J. Plus, vol. 135, no. 949, 2020.
  17. K. Rajasekaran, E. U. Samani, J. Stewart, and A. G. Banerjee, “Imaging-guided collision-free transport of multiple optically trapped beads,” in Int. Conf. Manipulation Autom. Robot. Small Scales (MARSS), 2017, pp. 1–6.
  18. T. Ju, S. Liu, J. Yang, and D. Sun, “Rapidly exploring random tree algorithm-based path planning for robot-aided optical manipulation of biological cells,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 3, pp. 649–657, 2014.
  19. R. W. Bowman, G. M. Gibson, A. Linnenberger, D. B. Phillips, J. A. Grieve, D. M. Carberry, S. Serati, M. J. Miles, and M. J. Padgett, ““Red tweezers”: Fast, customisable hologram generation for optical tweezers,” Comput. Phys. Commun., vol. 185, no. 1, pp. 268–273, 2014.
  20. D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003.
  21. C.-S. Guo, Y.-N. Yu, and Z. Hong, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun., vol. 283, no. 9, pp. 1889–1893, 2010.
  22. Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett., vol. 31, no. 11, pp. 1675–1677, 2006.
  23. K. Rajasekaran, E. Samani, M. Bollavaram, J. Stewart, and A. G. Banerjee, “An accurate perception method for low contrast bright field microscopy in heterogeneous microenvironments,” Appl. Sci., vol. 7, no. 12, 2017.
  24. K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Optical binding of nanoparticles,” Nanophotonics, vol. 9, no. 1, pp. 1–17, 2020.
  25. A. K. Reyes, C. E. Domínguez-Flores, J. A. Rayas, D. Monzón-Hernández, A. Martínez-García, and R. R. Cordero, “Real-time temperature monitoring in an optical trap,” IEEE Photon. Technol. Lett., vol. 34, no. 2, pp. 121–124, 2022.
  26. A. G. Banerjee, K. Rajasekaran, and B. Parsa, “A step toward learning to control tens of optically actuated microrobots in three dimensions,” in IEEE Int. Conf. Autom. Sci. Eng. (CASE), 2018, pp. 1460–1465.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube