Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental evidence for the $ω^4$ tail of the nonphononic spectra of glasses (2404.16996v2)

Published 25 Apr 2024 in cond-mat.dis-nn, cond-mat.mtrl-sci, and cond-mat.soft

Abstract: It is now established that glasses feature low-frequency, nonphononic excitations, in addition to phonons that follow Debye's vibrational density of state (VDoS). Extensive computer studies demonstrated that these nonphononic, glassy excitations follow a universal non-Debye VDoS ${\cal D}{\rm G}(\omega)!\sim!\omega4$, at low frequencies $\omega$. Yet, due to intrinsic difficulties in disentangling ${\cal D}{\rm G}(\omega)$ from the total VDoS ${\cal D}(\omega)$, which is experimentally accessible through various scattering techniques, the $\omega4$ tail of ${\cal D}{\rm G}(\omega)$ lacked direct experimental support. We develop a procedure to extract ${\cal D}{\rm G}(\omega)$ from the measured ${\cal D}(\omega)$, based on recent advances in understanding low-frequency excitations in glasses, and apply it to available datasets for diverse glasses. The resulting analysis shows that the $\omega4$ tail of the nonphononic vibrational spectra of glasses is nontrivially consistent with a broad range of experimental observations. It also further supports that ${\cal D}_{\rm G}(\omega)$ makes an additive contribution to ${\cal D}(\omega)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. W. Phillips, Tunneling states in amorphous solids, J. Low Temp. Phys. 7, 351 (1972).
  2. P. W. Anderson, B. I. Halperin, and C. M. Varma, Anomalous low-temperature thermal properties of glasses and spin glasses, Philos. Mag. 25, 1 (1972).
  3. R. O. Pohl, X. Liu, and E. Thompson, Low-temperature thermal conductivity and acoustic attenuation in amorphous solids, Rev. Mod. Phys. 74, 991 (2002).
  4. M. A. Ramos, Low-Temperature Thermal and Vibrational Properties of Disordered Solids (World Scientific, 2022).
  5. P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
  6. M. Il’in, V. Karpov, and D. Parshin, Parameters of soft atomic potentials in glasses, Zh. Eksp. Teor. Fiz. 92, 291 (1987).
  7. W. Schirmacher, G. Ruocco, and T. Scopigno, Acoustic attenuation in glasses and its relation with the boson peak, Phys. Rev. Lett. 98, 025501 (2007).
  8. H. Shintani and H. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7, 870 (2008).
  9. E. Lerner and E. Bouchbinder, Low-energy quasilocalized excitations in structural glasses, J. Chem. Phys. 155, 200901 (2021).
  10. E. Lerner, G. Düring, and E. Bouchbinder, Statistics and properties of low-frequency vibrational modes in structural glasses, Phys. Rev. Lett. 117, 035501 (2016).
  11. H. Mizuno, H. Shiba, and A. Ikeda, Continuum limit of the vibrational properties of amorphous solids, Proc. Natl. Acad. Sci. U.S.A. 114, E9767 (2017).
  12. C. Rainone, E. Bouchbinder, and E. Lerner, Pinching a glass reveals key properties of its soft spots, Proc. Natl. Acad. Sci. U.S.A. 117, 5228 (2020).
  13. E. Lerner and E. Bouchbinder, Nonphononic spectrum of two-dimensional structural glasses, J. Chem. Phys. 157, 166101 (2022).
  14. K. Shiraishi, H. Mizuno, and A. Ikeda, Non-phononic density of states of two-dimensional glasses revealed by random pinning, J. Chem. Phys. 158, 174502 (2023).
  15. E. Bouchbinder and E. Lerner, Universal disorder-induced broadening of phonon bands: from disordered lattices to glasses, New J. Phys. 20, 073022 (2018).
  16. E. Lerner and E. Bouchbinder, Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations, J. Chem. Phys. 158, 194503 (2023).
  17. L. Gartner and E. Lerner, Nonlinear modes disentangle glassy and Goldstone modes in structural glasses, SciPost Phys. 1, 016 (2016).
  18. G. Kapteijns, D. Richard, and E. Lerner, Nonlinear quasilocalized excitations in glasses: True representatives of soft spots, Phys. Rev. E 101, 032130 (2020).
  19. D. Richard, G. Kapteijns, and E. Lerner, Detecting low-energy quasilocalized excitations in computer glasses, Phys. Rev. E 108, 044124 (2023).
  20. M. A. Ramos, Are the calorimetric and elastic debye temperatures of glasses really different?, Philos. Mag. 84, 1313 (2004).
  21. E. Lerner, A. Moriel, and E. Bouchbinder, Enumerating low-frequency nonphononic vibrations in computer glasses, arXiv preprint arXiv:2404.12735  (2024).
  22. S. Yannopoulos, K. Andrikopoulos, and G. Ruocco, On the analysis of the vibrational boson peak and low-energy excitations in glasses, J. Non-Cryst. Solids 352, 4541 (2006).
  23. L. Wang, G. Szamel, and E. Flenner, Low-frequency excess vibrational modes in two-dimensional glasses, Phys. Rev. Lett. 127, 248001 (2021).
  24. A. Moriel, E. Lerner, and E. Bouchbinder, Boson peak in the vibrational spectra of glasses, Phys. Rev. Res. 6, 023053 (2024).
  25. Using Matlab’s minimization function ‘fminsearch’ [45].
  26. A. Rohatgi, Webplotdigitizer (2024).
  27. See Supplemental Materials attached to the PDF .
  28. A. Ninarello, L. Berthier, and D. Coslovich, Models and algorithms for the next generation of glass transition studies, Phys. Rev. X 7, 021039 (2017).
  29. G. Kapteijns, E. Bouchbinder, and E. Lerner, Unified quantifier of mechanical disorder in solids, Phys. Rev. E 104, 035001 (2021).
  30. The MathWorks Inc., Matlab version: 9.13.0.2166757 (R2022b) (2022).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com