Ordered and disordered stealthy hyperuniform point patterns across spatial dimensions (2404.16819v2)
Abstract: In previous work [Phys. Rev. X 5, 021020 (2015)], it was shown that stealthy hyperuniform systems can be regarded as hard spheres in Fourier-space in the sense that the the structure factor is exactly zero in a spherical region around the origin in analogy with the pair-correlation function of real-space hard spheres. In this work, we exploit this correspondence to confirm that the densest Fourier-space hard-sphere system is that of a Bravais lattice. This is in contrast to real-space hard-spheres, whose densest configuration is conjectured to be disordered. We also extend the virial series previously suggested for disordered stealthy hyperuniform systems to higher dimensions in order to predict spatial decorrelation as function of dimension. This prediction is then borne out by numerical simulations of disordered stealthy hyperuniform ground states in dimensions $d=2$-$8$.
- S. Torquato and F. H. Stillinger, Physical Review E 68, 041113 (2003).
- S. Torquato, Physics Reports 745, 1 (2018).
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 2nd ed., Grundlehren Der Mathematischen Wissenschaften (Springer-Verlag, New York, 1993).
- S. Torquato, Physical Review E 82, 056109 (2010).
- J.-L. Lagrange, Nouv. Mém. Acad. Roy. Soc. Belles Lettres Berlin , 265 (1773).
- T. C. Hales, Annals of Mathematics. Second Series 162, 1065 (2005).
- M. S. Viazovska, Annals of Mathematics 185, 991 (2017).
- A. Venkatesh, International Mathematics Research Notices 2013, 1628 (2013).
- G. A. Kabatiansky and V. I. Levenshtein, Problemy Peredachi Informatsii 14, 3 (1978).
- H. Cohn and Y. Zhao, Duke Mathematical Journal 163, 1965 (2014).
- M. Best, IEEE Transactions on Information Theory 26, 738 (1980).
- S. Torquato and F. H. Stillinger, Experimental Mathematics 15, 25 (2006).
- G. Parisi and F. Zamponi, Reviews of Modern Physics 82, 789 (2010).
- D. Chen and S. Torquato, Acta Materialia 142, 152 (2018).
- S. Torquato and D. Chen, Multifunctional Materials 1, 015001 (2018).
- J. Kim and S. Torquato, Proceedings of the National Academy of Sciences 117, 8764 (2020).
- J. Kim and S. Torquato, Optica 10, 965 (2023).
- J. Kim and S. Torquato, Journal of Physics. Condensed Matter: An Institute of Physics Journal 36 (2024a), 10.1088/1361-648X/ad2802.
- J. Kim and S. Torquato, Optical Materials Express 14, 194 (2024b).
- The value χ=12𝜒12\chi=\frac{1}{2}italic_χ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG comes from the constraint that both the real and the imaginary components of n~(𝐤)~𝑛𝐤\tilde{n}(\mathbf{k})over~ start_ARG italic_n end_ARG ( bold_k ) must be zero in order for S(𝐤)=0𝑆𝐤0S(\mathbf{k})=0italic_S ( bold_k ) = 0.
- S. Torquato and F. H. Stillinger, The Journal of Physical Chemistry B 106, 8354 (2002).
- P. K. Morse and P. Charbonneau, “Amorphous packings of spheres,” in Packing Problems in Soft Matter Physics, edited by H.-K. Chan, S. Hutzler, A. Mughal, C. S. O’Hern, Y. Wang, and D. Weaire (Royal Society of Chemistry, Cambridge, 2024).
- M. Mangeat and F. Zamponi, Physical Review E 93, 012609 (2016).
- P. Charbonneau and P. K. Morse, Physical Review E 108, 054102 (2023).
- K. Ball, International Mathematics Research Notices 1992, 217 (1992).
- S. Torquato and F. H. Stillinger, Physical Review Letters 100, 020602 (2008).
- S. Torquato, The Journal of Chemical Physics 136, 054106 (2012).
- J.-P. Hansen and I. McDonald, Theory of Simple Liquids: With Applications to Soft Matter, 4th ed. (Academic Press, 2013).
- There is an error in Ref. [3], which contains the wrong of argument of Θ(x)Θ𝑥\Theta(x)roman_Θ ( italic_x ) and an overall sign error.
- In comparing with Ref. [3], note that the definitions of b(d)𝑏𝑑b(d)italic_b ( italic_d ) differ.
- E. Agrell and T. Eriksson, IEEE Transactions on Information Theory 44, 1814 (1998).
- E. Gardner, Nuclear Physics B 257, 747 (1985).