Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unifying Asynchronous Logics for Hyperproperties (2404.16778v2)

Published 25 Apr 2024 in cs.LO

Abstract: We introduce and investigate a powerful hyper logical framework in the linear-time setting, we call generalized HyperLTL with stuttering and contexts (GHyperLTL_SC for short). GHyperLTL_SC unifies known asynchronous extensions of HyperLTL and the well-known extension KLTL of LTL with knowledge modalities under both the synchronous and asynchronous perfect recall semantics. As a main contribution, we individuate a meaningful fragment of GHyperLTL_SC, we call simple GHyperLTL_SC, with a decidable model-checking problem, which is more expressive than HyperLTL and known fragments of asynchronous extensions of HyperLTL with a decidable model-checking problem. Simple GHyperLTL_SC subsumes KLTL under the synchronous semantics and the one-agent fragment of KLTL under the asynchronous semantics, and to the best of our knowledge, it represents the unique hyper logic with a decidable model-checking problem which can express powerful non-regular trace properties when interpreted on singleton sets of traces. We justify the relevance of simple GHyperLTL_SC by showing that it can express diagnosability properties, interesting classes of information-flow security policies, both in the synchronous and asynchronous settings, and bounded termination (more in general, global promptness in the style of Prompt LTL).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. A Temporal Logic for Asynchronous Hyperproperties. In Proc. 33rd CAV, volume 12759 of LNCS 12759, pages 694–717. Springer, 2021. doi:10.1007/978-3-030-81685-8\_33.
  2. Second-Order Hyperproperties. In Proc. 35th CAV, volume 13965 of Lecture Notes in Computer Science, pages 309–332. Springer, 2023. doi:10.1007/978-3-031-37703-7\_15.
  3. Diagnosability of fair transition systems. Artif. Intell., 309:103725, 2022. doi:10.1016/J.ARTINT.2022.103725.
  4. (Asynchronous) temporal logics for hyperproperties on finite traces. (submitted, under review), 2024.
  5. Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic. Log. Methods Comput. Sci., 11(4), 2015. doi:10.2168/LMCS-11(4:4)2015.
  6. Unifying Hyper and Epistemic Temporal Logics. In Proc. 18th FoSSaCS, LNCS 9034, pages 167–182. Springer, 2015. doi:10.1007/978-3-662-46678-0\_11.
  7. Asynchronous Extensions of HyperLTL. In Proc. 36th LICS, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470583.
  8. Expressiveness and Decidability of Temporal Logics for Asynchronous Hyperproperties. In Proc. 33rd CONCUR, volume 243 of LIPIcs, pages 27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CONCUR.2022.27.
  9. Temporal Logics for Hyperproperties. In Proc. 3rd POST, LNCS 8414, pages 265–284. Springer, 2014. doi:10.1007/978-3-642-54792-8\_15.
  10. Hyperproperties. Journal of Computer Security, 18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.
  11. The hierarchy of hyperlogics. In Proc. 34th LICS, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785713.
  12. Model Checking Information Flow in Reactive Systems. In Proc. 13th VMCAI, LNCS 7148, pages 169–185. Springer, 2012. doi:10.1007/978-3-642-27940-9\_12.
  13. "Sometimes" and "Not Never" revisited: on branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/4904.4999.
  14. Reasoning about knowledge, volume 4. MIT Press Cambridge, 1995. doi:10.7551/mitpress/5803.001.0001.
  15. B. Finkbeiner and C. Hahn. Deciding Hyperproperties. In Proc. 27th CONCUR, LIPIcs 59, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.13.
  16. B. Finkbeiner and M. Zimmermann. The first-order logic of hyperproperties. In Proc. 34th STACS, LIPIcs 66, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.30.
  17. Propositional Dynamic Logic of Regular Programs. J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.
  18. J.A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE Symposium on Security and Privacy, pages 11–20. IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.
  19. Temporal Team Semantics Revisited. In Proc. 37th LICS, pages 44:1–44:13. ACM, 2022. doi:10.1145/3531130.3533360.
  20. Propositional dynamic logic for hyperproperties. In Proc. 31st CONCUR, LIPIcs 171, pages 50:1–50:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.50.
  21. Automata and fixpoints for asynchronous hyperproperties. Proc. ACM Program. Lang., 4(POPL), 2021. doi:10.1145/3434319.
  22. Secrecy in multiagent systems. ACM Trans. Inf. Syst. Secur., 12(1), 2008.
  23. The Complexity of Reasoning about Knowledge and Time: Extended Abstract. In Proc. 18th STOC, pages 304–315. ACM, 1986. doi:10.1145/12130.12161.
  24. Team Semantics for the Specification and Verification of Hyperproperties. In Proc. 43rd MFCS, LIPIcs 117, pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.10.
  25. From liveness to promptness. Formal Methods Syst. Des., 34(2):83–103, 2009. doi:10.1007/S10703-009-0067-Z.
  26. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Transactions on Computational Logic, 2(3):408–429, 2001. doi:10.1145/377978.377993.
  27. An Automata-Theoretic Approach to Branching-Time Model Checking. J. ACM, 47(2):312–360, 2000. doi:10.1145/333979.333987.
  28. M. Lück. On the complexity of linear temporal logic with team semantics. Theor. Comput. Sci., 837:1–25, 2020. doi:10.1016/j.tcs.2020.04.019.
  29. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems - Specification. Springer-Verlag, 1992. doi:10.1007/978-1-4612-0931-7.
  30. J. McLean. A General Theory of Composition for a Class of "Possibilistic” Properties. IEEE Trans. Software Eng., 22(1):53–67, 1996. doi:10.1109/32.481534.
  31. S. Miyano and T. Hayashi. Alternating finite automata on ω𝜔\omegaitalic_ω-words. Theoretical Computer Science, 32:321–330, 1984. doi:10.1016/0304-3975(84)90049-5.
  32. A. Pnueli. The Temporal Logic of Programs. In Proc. 18th FOCS, pages 46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.
  33. M.N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland University, 2016.
  34. Diagnosability of discrete-event systems. IEEE Trans. Autom. Control., 40(9):1555–1575, 1995. doi:10.1109/9.412626.
  35. The Complementation Problem for Büchi Automata with Applications to Temporal Logic. Theoretical Computer Science, 49:217–237, 1987. doi:10.1016/0304-3975(87)90008-9.
  36. Model checking knowledge and time in systems with perfect recall (extended abstract). In Proc. 19th FSTTCS, LNCS 1738, pages 432–445. Springer, 1999. doi:10.1007/3-540-46691-6\_35.
  37. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput., 115(1):1–37, 1994. doi:10.1006/inco.1994.1092.
  38. M.Y. Vardi. A temporal fixpoint calculus. In Proc. 15th POPL, pages 250–259. ACM, 1988.
  39. Linear-Time Temporal Logic with Team Semantics: Expressivity and Complexity. In Proc. 41st IARCS FSTTCS, LIPIcs 213, pages 52:1–52:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.52.
  40. S. Zdancewic and A.C. Myers. Observational Determinism for Concurrent Program Security. In Proc. 16th IEEE CSFW-16, pages 29–43. IEEE Computer Society, 2003. doi:10.1109/CSFW.2003.1212703.
  41. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)00009-7.
Citations (1)

Summary

We haven't generated a summary for this paper yet.