Unifying Asynchronous Logics for Hyperproperties (2404.16778v2)
Abstract: We introduce and investigate a powerful hyper logical framework in the linear-time setting, we call generalized HyperLTL with stuttering and contexts (GHyperLTL_SC for short). GHyperLTL_SC unifies known asynchronous extensions of HyperLTL and the well-known extension KLTL of LTL with knowledge modalities under both the synchronous and asynchronous perfect recall semantics. As a main contribution, we individuate a meaningful fragment of GHyperLTL_SC, we call simple GHyperLTL_SC, with a decidable model-checking problem, which is more expressive than HyperLTL and known fragments of asynchronous extensions of HyperLTL with a decidable model-checking problem. Simple GHyperLTL_SC subsumes KLTL under the synchronous semantics and the one-agent fragment of KLTL under the asynchronous semantics, and to the best of our knowledge, it represents the unique hyper logic with a decidable model-checking problem which can express powerful non-regular trace properties when interpreted on singleton sets of traces. We justify the relevance of simple GHyperLTL_SC by showing that it can express diagnosability properties, interesting classes of information-flow security policies, both in the synchronous and asynchronous settings, and bounded termination (more in general, global promptness in the style of Prompt LTL).
- A Temporal Logic for Asynchronous Hyperproperties. In Proc. 33rd CAV, volume 12759 of LNCS 12759, pages 694–717. Springer, 2021. doi:10.1007/978-3-030-81685-8\_33.
- Second-Order Hyperproperties. In Proc. 35th CAV, volume 13965 of Lecture Notes in Computer Science, pages 309–332. Springer, 2023. doi:10.1007/978-3-031-37703-7\_15.
- Diagnosability of fair transition systems. Artif. Intell., 309:103725, 2022. doi:10.1016/J.ARTINT.2022.103725.
- (Asynchronous) temporal logics for hyperproperties on finite traces. (submitted, under review), 2024.
- Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic. Log. Methods Comput. Sci., 11(4), 2015. doi:10.2168/LMCS-11(4:4)2015.
- Unifying Hyper and Epistemic Temporal Logics. In Proc. 18th FoSSaCS, LNCS 9034, pages 167–182. Springer, 2015. doi:10.1007/978-3-662-46678-0\_11.
- Asynchronous Extensions of HyperLTL. In Proc. 36th LICS, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470583.
- Expressiveness and Decidability of Temporal Logics for Asynchronous Hyperproperties. In Proc. 33rd CONCUR, volume 243 of LIPIcs, pages 27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CONCUR.2022.27.
- Temporal Logics for Hyperproperties. In Proc. 3rd POST, LNCS 8414, pages 265–284. Springer, 2014. doi:10.1007/978-3-642-54792-8\_15.
- Hyperproperties. Journal of Computer Security, 18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.
- The hierarchy of hyperlogics. In Proc. 34th LICS, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785713.
- Model Checking Information Flow in Reactive Systems. In Proc. 13th VMCAI, LNCS 7148, pages 169–185. Springer, 2012. doi:10.1007/978-3-642-27940-9\_12.
- "Sometimes" and "Not Never" revisited: on branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/4904.4999.
- Reasoning about knowledge, volume 4. MIT Press Cambridge, 1995. doi:10.7551/mitpress/5803.001.0001.
- B. Finkbeiner and C. Hahn. Deciding Hyperproperties. In Proc. 27th CONCUR, LIPIcs 59, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.13.
- B. Finkbeiner and M. Zimmermann. The first-order logic of hyperproperties. In Proc. 34th STACS, LIPIcs 66, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.30.
- Propositional Dynamic Logic of Regular Programs. J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.
- J.A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE Symposium on Security and Privacy, pages 11–20. IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.
- Temporal Team Semantics Revisited. In Proc. 37th LICS, pages 44:1–44:13. ACM, 2022. doi:10.1145/3531130.3533360.
- Propositional dynamic logic for hyperproperties. In Proc. 31st CONCUR, LIPIcs 171, pages 50:1–50:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.50.
- Automata and fixpoints for asynchronous hyperproperties. Proc. ACM Program. Lang., 4(POPL), 2021. doi:10.1145/3434319.
- Secrecy in multiagent systems. ACM Trans. Inf. Syst. Secur., 12(1), 2008.
- The Complexity of Reasoning about Knowledge and Time: Extended Abstract. In Proc. 18th STOC, pages 304–315. ACM, 1986. doi:10.1145/12130.12161.
- Team Semantics for the Specification and Verification of Hyperproperties. In Proc. 43rd MFCS, LIPIcs 117, pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.10.
- From liveness to promptness. Formal Methods Syst. Des., 34(2):83–103, 2009. doi:10.1007/S10703-009-0067-Z.
- O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Transactions on Computational Logic, 2(3):408–429, 2001. doi:10.1145/377978.377993.
- An Automata-Theoretic Approach to Branching-Time Model Checking. J. ACM, 47(2):312–360, 2000. doi:10.1145/333979.333987.
- M. Lück. On the complexity of linear temporal logic with team semantics. Theor. Comput. Sci., 837:1–25, 2020. doi:10.1016/j.tcs.2020.04.019.
- Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems - Specification. Springer-Verlag, 1992. doi:10.1007/978-1-4612-0931-7.
- J. McLean. A General Theory of Composition for a Class of "Possibilistic” Properties. IEEE Trans. Software Eng., 22(1):53–67, 1996. doi:10.1109/32.481534.
- S. Miyano and T. Hayashi. Alternating finite automata on ω𝜔\omegaitalic_ω-words. Theoretical Computer Science, 32:321–330, 1984. doi:10.1016/0304-3975(84)90049-5.
- A. Pnueli. The Temporal Logic of Programs. In Proc. 18th FOCS, pages 46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.
- M.N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland University, 2016.
- Diagnosability of discrete-event systems. IEEE Trans. Autom. Control., 40(9):1555–1575, 1995. doi:10.1109/9.412626.
- The Complementation Problem for Büchi Automata with Applications to Temporal Logic. Theoretical Computer Science, 49:217–237, 1987. doi:10.1016/0304-3975(87)90008-9.
- Model checking knowledge and time in systems with perfect recall (extended abstract). In Proc. 19th FSTTCS, LNCS 1738, pages 432–445. Springer, 1999. doi:10.1007/3-540-46691-6\_35.
- M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput., 115(1):1–37, 1994. doi:10.1006/inco.1994.1092.
- M.Y. Vardi. A temporal fixpoint calculus. In Proc. 15th POPL, pages 250–259. ACM, 1988.
- Linear-Time Temporal Logic with Team Semantics: Expressivity and Complexity. In Proc. 41st IARCS FSTTCS, LIPIcs 213, pages 52:1–52:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.52.
- S. Zdancewic and A.C. Myers. Observational Determinism for Concurrent Program Security. In Proc. 16th IEEE CSFW-16, pages 29–43. IEEE Computer Society, 2003. doi:10.1109/CSFW.2003.1212703.
- W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)00009-7.